in

Monitoring socio-climatic interactions to prioritise drinking water interventions in rural Africa

[adace-ad id="91168"]
  • 1.

    UNICEF and World Health Organization. Progress on household drinking water, sanitation and hygiene 2000-2017; Special focus on inequalities. (Joint Monitoring Programme, New York, 2019).

  • 2.

    IPCC. Climate Change 2014: Impacts, Adaptations, and Vulnerability; Part A: Global and Sectoral Aspects; Summary for Policymakers. 1-32, https://doi.org/10.1017/CBO9781107415379.003. (Cambridge University Press, Cambridge, UK and New York, 2014).

  • 3.

    Hoque, S. F. & Hope, R. The water diary method – proof-of-concept and policy implications for monitoring water use behaviour in rural Kenya. Water Policy 20, 725–743 (2018).

    Article  Google Scholar 

  • 4.

    Thomson, P. et al. Rainfall and groundwater use in rural Kenya. Sci. Total Environ. 649, 722–730 (2018).

    Article  Google Scholar 

  • 5.

    Thomas, E. et al. Quantifying increased groundwater demand from prolonged drought in the East African Rift Valley. Sci. Total Environ. 666, 1265–1272 (2019).

    CAS  Article  Google Scholar 

  • 6.

    Foster, T. & Hope, R. A multi-decadal and social-ecological systems analysis of community waterpoint payment behaviours in rural Kenya. J. Rural Stud. 47, 85–96 (2016).

    Article  Google Scholar 

  • 7.

    Foster, T. & Hope, R. Evaluating waterpoint sustainability and access implications of revenue collection approaches in rural Kenya. Water Resour. Res. 53, 1473–1490 (2017).

    Article  Google Scholar 

  • 8.

    Global WASH Cluster, Sanitaiton and Water for All, UNICEF, and ICRC. COVID-19 and WASH: Mitigating the socio-economic impacts on the Water, Sanitation and Hygiene (WASH) Sector. (2020).

  • 9.

    Shannon, R., Erhardt, D. & Kolker, J. Considerations for Financial Facilities to Support Water Utilities in the COVID-19 Crisis (World Bank, Washington, DC, 2020).

  • 10.

    Diffenbaugh, N. S., Giorgi, F., Raymond, L. & Bi, X. Indicators of 21st century socioclimatic exposure. Proc. Natl Acad. Sci. USA 104, 20195–20198 (2007).

    CAS  Article  Google Scholar 

  • 11.

    Choularton, R. J. & Krishnamurthy, P. K. How accurate is food security early warning? Evaluation of FEWS NET accuracy in Ethiopia. Food Security 11, 333–344 (2019).

    Article  Google Scholar 

  • 12.

    Boluwade, A. Remote sensed-based rainfall estimations over the East and West Africa regions for disaster risk management. ISPRS J. Photogramm. Remote Sens. 167, 305–320 (2020).

    Article  Google Scholar 

  • 13.

    Manandhar, A., Greeff, H., Thomson, P., Hope, R. & Clifton, D. A. Shallow aquifer monitoring using handpump vibration data. J. Hydrol. X 8, 100057 (2020).

    Article  Google Scholar 

  • 14.

    Thomas, E. et al. Reducing drought emergencies in the Horn of Africa. Sci. Total Environ. 727, 138772 (2020).

    CAS  Article  Google Scholar 

  • 15.

    World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report 42. (WHO, Geneva, 2020).

  • 16.

    World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report 71. (WHO, Geneva, 2020).

  • 17.

    McNicholl, D. et al. Performance-Based Funding for Reliable Rural Water Services in Africa. (Uptime consortium, 2019).

  • 18.

    Colman, A. W., Graham, R. J. & Davey, M. K. Direct and indirect seasonal rainfall forecasts for East Africa using global dynamical models. Int. J. Climatol. 40, 1132–1148 (2020).

    Article  Google Scholar 

  • 19.

    McNicholl, D. et al. Results-Based Contracts for Rural Water Services. (Uptime consortium, 2020).

  • 20.

    Funk, C. C. et al. A quasi-global precipitation time series for drought monitoring (USGS, Reston, VA, 2014).


  • Source: Resources - nature.com

    Predator-induced defence in a dinoflagellate generates benefits without direct costs

    Movement behavior of a solitary large carnivore within a hotspot of human-wildlife conflicts in India