in

Towards a model for road runoff infiltration management

[adace-ad id="91168"]
  • 1.

    Leroy, M. C. et al. Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales. Sci. Total Environ. 520, 146–153 (2015).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Helmreich, B., Hilliges, R., Schriewer, A. & Horn, H. Runoff pollutants of a highly trafficked urban road – correlation analysis and seasonal influences. Chemosphere 80, 991–997 (2010).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Wagner, S. et al. Tire wear particles in the aquatic environment – A review on generation, analysis, occurrence, fate and effects. Water Res. 139, 83–100 (2018).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Pramanik, B. K., Roychand, R., Monira, S., Bhuiyan, M. & Jegatheesan, V. Fate of road-dust associated microplastics and per- and polyfluorinated substances in stormwater. Process Saf. Environ. Prot. 144, 236–241 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Hensen, B. et al. Entry of biocides and their transformation products into groundwater via urban stormwater infiltration systems. Water Res. 144, 413–423 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Mrowiec, M. Road runoff management using improved infiltration ponds. Transp. Res. Procedia 14, 2659–2667 (2016).

    Article 

    Google Scholar 

  • 7.

    Goh, X., Radhakrishnan, M., Zevenbergen, C. & Pathirana, A. Effectiveness of Runoff control legislation and active, beautiful, clean (ABC) waters design features in Singapore. Water 9, 627 (2017).

    Article 

    Google Scholar 

  • 8.

    Liu, A., Liu, L., Li, D. & Guan, Y. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse. Sci. Total Environ. 515–516, 20–29 (2015).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Chen, C., Guo, W. & Ngo, H. H. Pesticides in stormwater runoff—a mini review. Front. Environ Sci. Eng. 13, 72 (2019).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Leroy, M. C. et al. Performance of vegetated swales for improving road runoff quality in a moderate traffic urban area. Sci. Total Environ. 566–567, 113–121 (2016).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Weiss, P. T., LeFevre, G. & Gulliver, J. S. Contamination of Soil and Groundwater due to Stormwater Infiltration Practices. Saint Anthony Falls Laboratory Project Report No. 38 (Saint Anthony Falls Laboratory, 2008).

  • 12.

    Cederkvist, K., Jensen, M. B. & Holm, P. E. Method for assessment of stormwater treatment facilities – synthetic road runoff addition including micro-pollutants and tracer. J. Environ. Manag. 198, 107–117 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Tedoldi, D., Chebbo, G., Pierlot, D., Kovacs, Y. & Gromaire, M. C. Impact of runoff infiltration on contaminant accumulation and transport in the soil/filter media of Sustainable Urban Drainage Systems: a literature review. Sci. Total Environ. 569–570, 904–926 (2016).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Murakami, M. et al. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration. Water Res. 42, 2745–2755 (2008).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Flanagan, K. et al. Retention and transport processes of particulate and dissolved micropollutants in stormwater biofilters treating road runoff. Sci. Total Environ. 656, 1178–1190 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Piguet, P., Parriaux, A. & Bensimon, M. The diffuse infiltration of road runoff: An environmental improvement. Sci. Total Environ. 397, 13–23 (2008).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Scholz, M. & Kazemi Yazdi, S. Treatment of road runoff by a combined storm water treatment, detention and infiltration system. Water Air Soil Pollut. 198, 55–64 (2009).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Huber, M. & Helmreich, B. Stormwater management: calculation of traffic area runoff loads and traffic related emissions. Water 8, 294 (2016).

  • 19.

    Krein, A. & Schorer, M. Road runoff pollution by polycyclic aromatic hydrocarbons and its contribution to river sediments. Water Res. 34, 4110–4115 (2000).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Murakami, M., Nakajima, F. & Furumai, H. Modelling of runoff behaviour of particle-bound polycyclic aromatic hydrocarbons (PAHs) from roads and roofs. Water Res. 38, 4475–4483 (2004).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Pinasseau, L. et al. Use of passive sampling and high resolution mass spectrometry using a suspect screening approach to characterise emerging pollutants in contaminated groundwater and runoff. Sci. Total Environ. 672, 253–263 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Bergé, A. et al. Non-target strategies by HRMS to evaluate fluidized micro-grain activated carbon as a tertiary treatment of wastewater. Chemosphere 213, 587–595 (2018).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Nguyen, T. M. H. et al. Influences of chemical properties, soil properties, and solution ph on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs). Environ. Sci. Technol. 54, 15883–15892 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Batjes, N. H. Methodological Framework for Assessment and Mapping of the Vulnerability of Soils to Diffuse Pollution at a Continental Level (SOVEUR Project) (ISRIC—World Soil Information, 1997).

  • 25.

    Arrêté du 8 janvier 1998 fixant les prescriptions techniques applicables aux épandages de boues sur les sols agricoles pris en application du décret no. 97-1133 du 8 décembre 1997 relatif à l’épandage des boues issues du traitement des eaux usées. J. Off. 16, https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000570287/ (1998).

  • 26.

    Sauvé, S., Hendershot, W. & Allen, H. E. Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden and organic matter. Environ. Sci. Technol. 34, 1125–1131 (2000).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Yadav, S. Correlation analysis in biological studies. J. Pract. Cardiovasc. Sci. 4, 116 (2018).

    Article 

    Google Scholar 

  • 28.

    Cottin, N. & Merlin, G. Removal of PAHs from laboratory columns simulating the humus upper layer of vertical flow constructed wetlands. Chemosphere 73, 711–716 (2008).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Ren, X. et al. Sorption, transport and biodegradation – an insight into bioavailability of persistent organic pollutants in soil. Sci. Total Environ. 610–611, 1154–1163 (2018).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Wiest, L. et al. Priority substances in accumulated sediments in a stormwater detention basin from an industrial area. Environ. Pollut. 243, 1669–1678 (2018).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Hares, R. J. & Ward, N. I. Sediment accumulation in newly constructed vegetative treatment facilities along a new major road. Sci. Total Environ. 334–335, 473–479 (2004).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Strömvall, A., Norin, M. & Pettersson, T. J. R. Organic contaminants in urban sediments and vertical leaching in road ditches. In The Eighth Highway and Urban Environment Symposium (eds Morrison, G. M. & Rauch, S.) 235–247 (Springer, 2007).

  • 33.

    Dechesne, M., Barraud, S. & Bardin, J. P. Spatial distribution of pollution in an urban stormwater infiltration basin. J. Contam. Hydrol. 72, 189–205 (2004).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Dierkes, C. & Geiger, W. F. Pollution retention capabilities of roadside soils. Water Sci. Technol. 39, 201–208 (1999).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Sauvé, S., Mcbride, M. B., Norvell, W. A. & Hendershot, W. H. Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter. Water Air Soil Pollut. 100, 133–149 (1997).

    Article 

    Google Scholar 

  • 36.

    Sauvé, S., Manna, S., Turmel, M. C., Roy, A. G. & Courchesne, F. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil. Environ. Sci. Technol. 37, 5191–5196 (2003).

    Article 
    CAS 

    Google Scholar 

  • 37.

    El-Mufleh, A. et al. Distribution of PAHs and trace metals in urban stormwater sediments: combination of density fractionation, mineralogy and microanalysis. Environ. Sci. Pollut. Res. 21, 9764–9776 (2014).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Rostvall, A. et al. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests – role of physicochemical properties. Water Res. 137, 97–106 (2018).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Paredes, L., Fernandez-Fontaina, E., Lema, J. M., Omil, F. & Carballa, M. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems. Sci. Total Environ. 551–552, 640–648 (2016).

    Article 
    CAS 

    Google Scholar 

  • 40.

    FAO, ITPS, GSBI, SCBD & EC. State of knowledge of soil biodiversity – status, challenges and potentialities. FAO https://doi.org/10.4060/cb1928en (2020).

  • 41.

    Tietz, A., Langergraber, G., Watzinger, A., Haberl, R. & Kirschner, A. K. T. Bacterial carbon utilization in vertical subsurface flow constructed wetlands. Water Res. 42, 1622–1634 (2008).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Weil, R. R. & Brady, N. C. The Nature and Properties of Soils 15th edn (Pearson Education, 2016).

  • 43.

    Usman, K., Al-Ghouti, M. A. & Abu-Dieyeh, M. H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 44.

    Nuel, M., Laurent, J., Bois, P., Heintz, D. & Wanko, A. Seasonal and ageing effect on the behaviour of 86 drugs in a full-scale surface treatment wetland: removal efficiencies and distribution in plants and sediments. Sci. Total Environ. 615, 1099–1109 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    FAO. World Reference Base For Soil Resources 2014. International Soil Classification System For Naming Soils And Creating Legends For Soil Maps. World Soil Resources Report No. 106 (2014).

  • 46.

    Villette, C. et al. In situ localization of micropollutants and associated stress response in Populus nigra leaves. Environ. Int. 126, 523–532 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Schymanski, E. L. et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ. Sci. Technol. 48, 2097–2098 (2014).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Boleda, M. R., Galceran, M. T. & Ventura, F. Validation and uncertainty estimation of a multiresidue method for pharmaceuticals in surface and treated waters by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1286, 146–158 (2013).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Barupal, D. K. & Fiehn, O. Chemical similarity enrichment analysis (ChemRICH) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 7, 1–11 (2017).

    CAS 
    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Continuous warming shift greening towards browning in the Southeast and Northwest High Mountain Asia

    Non-diphtheriae Corynebacterium species are associated with decreased risk of pneumococcal colonization during infancy