in

Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism

[adace-ad id="91168"]
  • 1.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    ADS 

    Google Scholar 

  • 2.

    IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).

    Google Scholar 

  • 3.

    IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).

    Google Scholar 

  • 4.

    Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 5.

    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).

    PubMed 

    Google Scholar 

  • 6.

    Lowe, A. T., Bos, J. & Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 9, 963. https://doi.org/10.1038/s41598-018-37764-4 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 7.

    Justić, D., Rabalais, N. N. & Turner, R. E. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41, 992–1003 (1996).

    ADS 

    Google Scholar 

  • 8.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 9.

    del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).

    PubMed 
    ADS 

    Google Scholar 

  • 10.

    Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coast. 36, 697–707 (2013).

    CAS 

    Google Scholar 

  • 11.

    Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).

    ADS 

    Google Scholar 

  • 12.

    Gaarder, T. & Gran, H. H. Investigations of the production of plankton in the Oslo Fjord. Rapports Procès-Verbaux Réunions 42, 3–48 (1927).

    Google Scholar 

  • 13.

    Bender, M. et al. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098 (1987).

    ADS 

    Google Scholar 

  • 14.

    Marra, J. Net and gross productivity: Weighing in with 14C. Aquat. Microb. Ecol. 56, 123–131 (2009).

    Google Scholar 

  • 15.

    Hitchcock, G. L., Kirkpatrick, G., Minnett, P. & Palubok, V. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA. Harmful Algae 9, 351–358 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Stephenson, T. A., Zoond, A. & Eyre, J. The liberation and utilisation of oxygen by the population of rock-pools. J. Exp. Biol. 11, 162–172 (1934).

    Google Scholar 

  • 17.

    Beyers, R. J. Relationship between temperature and the metabolism of experimental ecosystems. Science 136, 980–982 (1962).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 18.

    Duarte, C. M. & Regaudie-de-Gioux, A. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol. Oceanogr. 54, 1015–1022 (2009).

    CAS 
    ADS 

    Google Scholar 

  • 19.

    Noël, L.M.-L. et al. Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuar. Coast. Shelf Sci. 88, 153–159 (2010).

    ADS 

    Google Scholar 

  • 20.

    Hall, C. A. S. & Moll, R. Methods of assessing aquatic primary productivity. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 19–53 (Springer, 1975).

    Google Scholar 

  • 21.

    Platt, T. et al. Biological production of the oceans: The case for a consensus. Mar. Ecol. Prog. Ser. 52, 77–88 (1989).

    ADS 

    Google Scholar 

  • 22.

    Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).

    ADS 

    Google Scholar 

  • 23.

    Odum, H. T. & Hoskin, C. M. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. 5, 16–46 (1958).

    Google Scholar 

  • 24.

    Johnson, K. M., Burney, C. M. & Sieburth, J. M. Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65, 49–60 (1981).

    CAS 

    Google Scholar 

  • 25.

    Volaric, M. P., Berg, P. & Reidenbach, M. A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coast. 43, 2034–2045 (2020).

    CAS 

    Google Scholar 

  • 26.

    Collins, J. R. et al. An autonomous, in situ light-dark bottle device for determining community respiration and net community production. Limnol. Oceanogr. Method. 16, 323–338 (2018).

    Google Scholar 

  • 27.

    Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).

    Google Scholar 

  • 28.

    Peterson, B. J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11, 359–385 (1980).

    Google Scholar 

  • 29.

    Jackson, D. F. & McFadden, J. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35, 2–4 (1954).

    Google Scholar 

  • 30.

    Van de Bogert, M. C., Carpenter, S. R. & Pace, M. L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 5, 145–155 (2007).

    Google Scholar 

  • 31.

    Barone, B., Nicholson, D., Ferrón, S., Firing, E. & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnol. Oceanogr. Methods 17, 650–664 (2019).

    CAS 

    Google Scholar 

  • 32.

    Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: State of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).

    CAS 

    Google Scholar 

  • 33.

    Nicholson, D. P., Wilson, S. T., Doney, S. C. & Karl, D. M. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42, 4032–4039 (2015).

    CAS 
    ADS 

    Google Scholar 

  • 34.

    Mantikci, M., Hansen, J. L. S. & Markager, S. Photosynthesis enhanced dark respiration in three marine phytoplankton species. J. Exp. Mar. Biol. Ecol. 497, 188–196 (2017).

    CAS 

    Google Scholar 

  • 35.

    Truchot, J.-P. & Duhamel-Jouve, A. Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. Resp. Physiol. 39, 241–254 (1980).

    CAS 

    Google Scholar 

  • 36.

    Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81, 114–122 (2009).

    ADS 

    Google Scholar 

  • 37.

    Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466. https://doi.org/10.1371/journal.pone.0152466 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Andersen, M. R., Kragh, T. & Sand-Jensen, K. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc. R. Soc. B 284, 20171427. https://doi.org/10.1098/rspb.2017.1427 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Nielsen, K. J. Bottom-up and top-down forces in tide pools: Test of a food chain model in an intertidal community. Ecol. Monogr. 71, 187–217 (2001).

    Google Scholar 

  • 40.

    Altieri, A. H., Trussell, G. C., Ewanchuk, P. J., Bernatchez, G. & Bracken, M. E. S. Consumers control diversity and functioning of a natural marine ecosystem. PLoS ONE 4, e5291. https://doi.org/10.1371/journal.pone.0005291 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 41.

    O’Connor, N. E., Bracken, M. E. S., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).

    Google Scholar 

  • 42.

    Rheuban, J. E., Berg, P. & McGlathery, K. J. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507, 1–13 (2014).

    ADS 

    Google Scholar 

  • 43.

    Barrón, C. et al. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6, 144–153. https://doi.org/10.1007/s10021-002-0402-3 (2003).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Kraufvelin, P., Lindholm, A., Pedersen, M. F., Kirkerud, L. A. & Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 157, 29–47 (2010).

    Google Scholar 

  • 45.

    Epping, E. H. G. & Jørgensen, B. B. Light-enhanced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser. 139, 193–203 (1996).

    ADS 

    Google Scholar 

  • 46.

    Graham, J. M., Kranzfelder, J. A. & Auer, M. T. Light and temperature as factors regulating seasonal growth and distribution of Ulothrix zonata (Ulvophyceae). J. Phycol. 21, 228–234. https://doi.org/10.1111/j.0022-3646.1985.00228.x (1985).

    Article 

    Google Scholar 

  • 47.

    Hotchkiss, E. R. & Hall, R. O. Jr. High rates of daytime respiration in three streams: Use of δ18OO2 and O2 to model diel ecosystem metabolism. Limnol. Oceanogr. 59, 798–810. https://doi.org/10.4319/lo.2014.59.3.0798 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 48.

    Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).

    CAS 
    ADS 

    Google Scholar 

  • 49.

    Conley, D. J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C. M. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009).

    CAS 

    Google Scholar 

  • 50.

    Lefèvre, D., Bentley, T. L., Robinson, C., Blight, S. P. & Williams, P. J. L. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol. 184, 201–215 (1994).

    Google Scholar 

  • 51.

    López-Urrutia, Á., SanMartin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 52.

    Grant, J. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90, 299–306 (1986).

    Google Scholar 

  • 53.

    Jankowski, K., Schindler, D. E. & Lisi, P. J. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).

    Google Scholar 

  • 54.

    Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B. 365, 2117–2126 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 56.

    Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coast. 32, 123–145 (2009).

    CAS 

    Google Scholar 

  • 57.

    Howard, E. M. et al. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coast. 43, 1908–1922 (2020).

    CAS 

    Google Scholar 

  • 58.

    Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 59.

    Winslow, L. A. et al. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).

    CAS 

    Google Scholar 

  • 60.

    Sorte, C. J. B. & Bracken, M. E. S. Warming and elevated CO2 interact to drive rapid shifts in marine community production. PLoS ONE 10, e0145191. https://doi.org/10.1371/journal.pone.0145191 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Hinode, K. et al. The phenology of gross ecosystem production in a macroalga and seagrass canopy is driven by seasonal temperature. Phycol. Res. 68, 298–312 (2020).

    CAS 

    Google Scholar 

  • 62.

    Bracken, M., Miller, L., Mastroni, S., Lira, S. & Sorte, C. Data from: Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism. Dryad Dataset https://doi.org/10.7280/D1M39B (2021).

    Article 

    Google Scholar 

  • 63.

    Reiskind, J. B., Seamon, P. T. & Bowes, G. Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87, 686–692 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection

    Resolving the structure of phage–bacteria interactions in the context of natural diversity