in

Accurate phenology analyses require bud traits and energy budgets

[adace-ad id="91168"]
  • Peñuelas, J. & Filella, I. Phenology. Responses to a warming world. Science 294, 793–795 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Ramos-Jiliberto, R., Moisset de Espanés, P., Franco-Cisterna, M., Petanidou, T. & Vázquez, D. P. Phenology determines the robustness of plant-pollinator networks. Sci. Rep. 8, 14873 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Chuine, I. Why does phenology drive species distribution? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3149–3160 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chmielewski, F.-M. in Phenology: An Integrative Environmental Science 2nd edn (ed. Schwartz M. D.) 539–561 (Springer, 2013).

  • Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).

    Article 

    Google Scholar 

  • Katelaris, C. H. & Beggs, P. J. Climate change: allergens and allergic diseases. Intern. Med. J. 48, 129–134 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Schwartz, M. D. (ed.) Phenology: An Integrative Environmental Science 2nd edn (Springer, 2013).

  • Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).

    Article 

    Google Scholar 

  • Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Article 

    Google Scholar 

  • Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).

    Article 

    Google Scholar 

  • Vitasse, Y. et al. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses. Agric. For. Meteorol. 149, 735–744 (2009).

    Article 

    Google Scholar 

  • Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982-2012. PLoS ONE 11, e0157134 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zohner, C. M., Mo, L., Pugh, T. A. M., Bastin, J.-F. & Crowther, T. W. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees. Glob. Change Biol. https://doi.org/10.1111/gcb.15098 (2020).

  • Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).

  • Zohner, C. M., Benito, B. M., Svenning, J.-C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).

    Article 

    Google Scholar 

  • Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 74016 (2017).

    Article 

    Google Scholar 

  • Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).

    Article 

    Google Scholar 

  • Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).

    Article 

    Google Scholar 

  • Chuine, I., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res 132, 1–8 (2013).

    Article 

    Google Scholar 

  • Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).

    Article 

    Google Scholar 

  • Körner, C. & Basler, D. Plant science. Phenology under global warming. Science 327, 1461–1462 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).

    Article 

    Google Scholar 

  • Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol. 213, 511–524 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brelsford, C. C., Nybakken, L., Kotilainen, T. K. & Robson, T. M. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiol. 39, 925–950 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Strømme, C. B. et al. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula. Plant Cell Environ. 38, 867–877 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).

    Article 

    Google Scholar 

  • Huang, Y., Jiang, N., Shen, M. & Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 112, 106161 (2020).

    Article 

    Google Scholar 

  • Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Zhang, S., Isabel, N., Huang, J.-G., Ren, H. & Rossi, S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. Int. J. Biometeorol. 63, 1631–1640 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Meng, L. et al. Divergent responses of spring phenology to daytime and nighttime warming. Agric. For. Meteorol. 281, 107832 (2020).

    Article 

    Google Scholar 

  • Bigler, C. & Vitasse, Y. Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Front. Plant Sci. 10, 398 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fu, Y. H. et al. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol. 212, 590–597 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vitasse, Y. et al. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. https://doi.org/10.1111/nph.17606 (2021).

  • Azeez, A. et al. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat. Commun. 12, 1123 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hamer, P. The heat balance of apple buds and blossoms. Part I. Heat transfer in the outdoor environment. Agric. For. Meteorol. 35, 339–352 (1985).

    Article 

    Google Scholar 

  • Landsberg, J. J., Butler, D. R. & Thorpe, M. R. Apple bud and blossom temperatures. J. Horticultural Sci. 49, 227–239 (1974).

    Article 

    Google Scholar 

  • Grace, J. The temperature of buds may be higher than you thought. N. Phytol. 170, 1–3 (2006).

    Article 

    Google Scholar 

  • Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Knohl, A., Schulze, E.-D., Kolle, O. & Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric. For. Meteorol. 118, 151–167 (2003).

    Article 

    Google Scholar 

  • Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bailey, B. N., Stoll, R., Pardyjak, E. R. & Miller, N. E. A new three-dimensional energy balance model for complex plant canopy geometries: Model development and improved validation strategies. Agric. For. Meteorol. 218-219, 146–160 (2016).

    Article 

    Google Scholar 

  • Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 36, 2839–2851 (2006).

    Article 

    Google Scholar 

  • Sanchez‐Lorenzo, A. et al. Reassessment and update of long‐term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).

  • Pfeifroth, U., Sanchez‐Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface‐ and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).

    Article 

    Google Scholar 

  • Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).

    Article 

    Google Scholar 

  • Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ma, Q., Huang, J.-G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).

    Article 

    Google Scholar 

  • Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1920816117 (2020).

  • Xiao, L. et al. Estimating spring frost and its impact on yield across winter wheat in China. Agric. For. Meteorol. 260–261, 154–164 (2018).

    Article 

    Google Scholar 

  • Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Leolini, L. et al. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 222, 197–208 (2018).

    Article 

    Google Scholar 

  • Greco, S. et al. Late spring frost in mediterranean beech forests: extended crown dieback and short-term effects on moth communities. Forests 9, 388 (2018).

    Article 

    Google Scholar 

  • Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).

    Article 

    Google Scholar 

  • Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).

    Article 

    Google Scholar 

  • Jones, H. G. Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).

  • University Of East Anglia Climatic Research Unit (CRU) & Harris, I. C. CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017, 2019; https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac4b0ee8f4ed

  • Dupleix, A., Sousa Meneses, D., de, Hughes, M. & Marchal, R. Mid-infrared absorption properties of green wood. Wood Sci. Technol. 47, 1231–1241 (2013).

    CAS 
    Article 

    Google Scholar 

  • Howard, R. & Stull, R. IR radiation from trees to a ski run: a case study. J. Appl. Meteorol. Climatol. 52, 1525–1539 (2013).

    Article 

    Google Scholar 

  • Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics. Plants, Animals, and the Atmosphere 4th edn (Elsevier/Academic Press, 2013).

  • Bergman, T. L., Incropera, F. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (J. Wiley & Sons, 2011).

  • Jacobs, A., Heusinkveld, B. G. & Kessel, G. Simulating of leaf wetness duration within a potato canopy. NJAS Wagening. J. Life Sci. 53, 151–166 (2005).

    Article 

    Google Scholar 

  • Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).

    Article 

    Google Scholar 

  • Muñoz Sabater, J. Copernicus Climate Change Service: ERA5-Land hourly data from 1981 to present, 2019; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land

  • Kusch, E. & Davy, R. KrigR – A tool for downloading and statistically downscaling climate reanalysis data. Environ. Res. Lett. 17, 024005 (2022).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/


  • Source: Ecology - nature.com

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Passion projects prepare to launch