in

Biodiversity mediates ecosystem sensitivity to climate variability

[adace-ad id="91168"]
  • Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).

    PubMed 

    Google Scholar 

  • IPBES. Global Assessment Report on Biodiversity and Ecosystem Service. Debating Nature’s Value (IPBES, 2019).

  • Harrison, S. Plant community diversity will decline more than increase under climatic warming. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190106 (2020).

    Google Scholar 

  • Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 1327, eaax3100 (2019).

  • Chapin, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed 

    Google Scholar 

  • Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science (80-.). 348, 336–340 (2015).

    CAS 

    Google Scholar 

  • Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Y. et al. Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nat. Commun. 10, 1–9 (2019).

    Google Scholar 

  • Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).

    Google Scholar 

  • Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Chang. Biol. 25, 4257–4272 (2019).

    PubMed 

    Google Scholar 

  • Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA 111, 13697–13702 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).

    PubMed 

    Google Scholar 

  • Mazzochini, G. G. et al. Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Glob. Ecol. Biogeogr. 28, 1430–1439 (2019).

    Google Scholar 

  • Manhães, A. P., Mazzochini, G. G., Oliveira-Filho, A. T., Ganade, G. & Carvalho, A. R. Spatial associations of ecosystem services and biodiversity as a baseline for systematic conservation planning. Divers. Distrib. 22, 932–943 (2016).

    Google Scholar 

  • García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).

    Google Scholar 

  • Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Linscheid, N. et al. Towards a global understanding of vegetation-climate dynamics at multiple timescales. Biogeosciences 17, 945–962 (2020).

    Google Scholar 

  • Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science (80-.). 300, 1560–1563 (2003).

    CAS 

    Google Scholar 

  • Quetin, G. R. & Swann, A. L. S. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Clim. 30, 5835–5849 (2017).

    Google Scholar 

  • Cavender-bares, J. et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U. S. Am. J. Bot. 105, 565–586 (2018).

    PubMed 

    Google Scholar 

  • Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 1465–1476 (2004).

    CAS 

    Google Scholar 

  • Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    PubMed 

    Google Scholar 

  • Cavender-Bares, J., Ackerly, D. D., Hobbie, S. E. & Townsend, P. A. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).

    Google Scholar 

  • Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Šímová, I. et al. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J. Biogeogr. 45, 895–916 (2018).

    Google Scholar 

  • Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 111, 13745–13750 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Google Scholar 

  • White, H. J. et al. Ecosystem stability at the landscape scale is primarily associated with climatic history. Funct. Ecol. 1–13 https://doi.org/10.1111/1365-2435.13957 (2021).

  • Enquist, B. J. et al. Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories. Advances in Ecological Research. Vol. 52 (Elsevier Ltd., 2015).

  • Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).

    Google Scholar 

  • Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).

    PubMed 

    Google Scholar 

  • Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bond, E. M. & Chase, J. M. Biodiversity and ecosystem functioning at local and regional spatial scales. Ecol. Lett. 5, 467–470 (2002).

    Google Scholar 

  • Delsol, R., Loreau, M. & Haegeman, B. The relationship between the spatial scaling of biodiversity and ecosystem stability. Glob. Ecol. Biogeogr. 27, 439–449 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, G. R. The nature of selection. J. Theor. Biol. 175, 389-396 (1995).

  • Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).

    Google Scholar 

  • Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cadotte, M., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosytem stability. Ecology 93, S223–S233 (2012).

    Google Scholar 

  • Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P. & Pavoine, S. Predicting loss of evolutionary history: Where are we? Biol. Rev. 92, 271–291 (2017).

    PubMed 

    Google Scholar 

  • Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).

    PubMed 

    Google Scholar 

  • Faith, D. P. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 8, 361–373 (1992).

    PubMed 

    Google Scholar 

  • Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).

    PubMed 

    Google Scholar 

  • Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).

    PubMed 

    Google Scholar 

  • Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).

    Google Scholar 

  • Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Prepr. 4, e2615v2 (2016).

  • Maitner, B. S. et al. The bien R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).

    Google Scholar 

  • Mori, A. S. Resilience in the studies of biodiversity–ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).

    PubMed 

    Google Scholar 

  • Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Google Scholar 

  • Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    PubMed 

    Google Scholar 

  • Huete, A., Chris, J. & Leeuwen, W. Van. MODIS vegetation index (MOD 13). Algorithm theoretical basis document vol. 3 https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (1999).

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • MacIas-Fauria, M., Forbes, B. C., Zetterberg, P. & Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Chang. 2, 613–618 (2012).

    Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science (80-.). 344, 1247579 (2014).

  • Zhang, Y. et al. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Sci. Rep. 6, 39748 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).

    Google Scholar 

  • Srivastava, D. S. et al. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).

    PubMed 

    Google Scholar 

  • Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).

    PubMed 

    Google Scholar 

  • Brun, P. et al. Plant community impact on productivity: Trait diversity or key(stone) species effects? Ecol. Lett. 25, 913–925 (2022).

    PubMed 

    Google Scholar 

  • Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186 (2016).

    Google Scholar 

  • Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1216065111 (2014).

  • Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).

    Google Scholar 

  • Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Ye, J. S., Pei, J. Y. & Fang, C. Under which climate and soil conditions the plant productivity–precipitation relationship is linear or nonlinear? Sci. Total Environ. 616–617, 1174–1180 (2018).

    PubMed 

    Google Scholar 

  • Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. U. S. A. 108, 17034–17039 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. 104, 13384–13389 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Chang. 11, 543–550 (2021).

    Google Scholar 

  • Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).

    PubMed 

    Google Scholar 

  • Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).

    CAS 

    Google Scholar 

  • Li, D., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl Acad. Sci. USA 116, 19989–19994 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing Version 3.5.2. (R Core Team, 2018).

  • Ammer, C. Diversity and forest productivity in a changing climate. N. Phytol. 221, 50–66 (2019).

    Google Scholar 

  • Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Larue, E. A., Hardiman, B. S., Elliott, J. M. & Fei, S. Structural diversity as a predictor of ecosystem function. Environ. Res. Lett. 14, 114011 (2019).

  • Phillips, S. J. & Dudìk, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • Diniz-Filho, J. A. F. & Bini, L. M. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 14, 177–185 (2005).

    Google Scholar 

  • Merow, C., Smith, M. J. & Silander, J. a. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).

    Google Scholar 

  • Merow, C. BIEN range methods description. http://bien.nceas.ucsb.edu/bien/wp-content/uploads/2017/06/BIEN3RangeMethodsSummary.pdf (2017).

  • Schrodt, F. et al. BHPMF-a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Google Scholar 

  • Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).

    PubMed 

    Google Scholar 

  • Guo, W. Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.21.052464 (2020).

  • Guo, W., Serra-diaz, J. M., Schrodt, F. & Eiserhardt, W. L. Paleoclimate and current climate collectively shape the phylogenetic and functional diversity of trees worldwide. Preprint at bioRxiv https://doi.org/10.1101/2020.06.02.128975 (2020).

  • Diniz-Filho, J. A. F. et al. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography (Cop.). 35, 239–249 (2012).

    Google Scholar 

  • Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).

    Google Scholar 

  • Santos, T. PVR: Phylogenetic eigenvectors regression and phylogentic signal-representation curve. R package version 0.3. Available at: http://CRAN.R-project.org/package=PVR (2018).

  • Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).

    Google Scholar 

  • Kendall, M. & Stuart, A. The Advanced Theory of Statistics (Macmillan, 1983).

  • Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. Camb. Philos. Soc. 86, 792–812 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).

    PubMed 

    Google Scholar 

  • Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Cornwell, W. K., Schwilk, L. D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).

    PubMed 

    Google Scholar 

  • Villéger, S., Maire, E. & Leprieur, F. On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: a comment on Sobral et al. (2016). Ecol. Lett. 20, 554–557 (2017).

    PubMed 

    Google Scholar 

  • Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, an other tools for functional ecology. R package version 1.0-12 (Comprehensive R Archive Network, Vienna, Austria, 2015).

  • Podani, J. & Schmera, D. On dendrogram-based measures of functional diversity. Oikos 115, 179–185 (2006).

    Google Scholar 

  • Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).

    PubMed 

    Google Scholar 

  • Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Institution Press, 1996).

  • Swenson, N. G. Functional and Phylogenetic Ecology in R. (Springer, 2014).

  • Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628 (2007).

    Google Scholar 

  • Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).

    Google Scholar 

  • Bivand, R. spatialreg: Spatial Regression Analysis (R package version 1.1-5, 2019).


  • Source: Ecology - nature.com

    Mucin induces CRISPR-Cas defense in an opportunistic pathogen

    Making hydrogen power a reality