in

Body size variability across habitats in the Brachionus plicatilis cryptic species complex

[adace-ad id="91168"]
  • Schwenk, K., Padilla, D. K., Bakken, G. S. & Full, R. J. Grand challenges in organismal biology. Integr. Comp. Biol. 49, 7–14. https://doi.org/10.1093/icb/icp034 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Chapman, L. J., Galis, F. & Shinn, J. Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Lett. 3, 387–393. https://doi.org/10.1046/j.1461-0248.2000.00160.x (2000).

    Article 

    Google Scholar 

  • Crispo, E. & Chapman, L. J. Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J. Evol. Biol. 23, 2091–2103. https://doi.org/10.1111/j.1420-9101.2010.02069.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20180174 (2019).

    Article 

    Google Scholar 

  • Schmidt-Nielsen, K. Animal physiology: adaptation and environment 4th edn. (Cambridge University Press, 1990).

    Google Scholar 

  • Willmer, P., Stone, G. & Johnston, I. A. Environmental physiology of animals (Blackwell, 2000).

    Google Scholar 

  • Begon, M., Townsend, C. R. & Harper, J. L. Ecology from individuals to ecosystems 4th edn. (Blackwell Publishing, 2006).

    Google Scholar 

  • Johnston, I. A. & Bennett, A. F. Animals and temperature. Phenotypic and Evolutionary Adaptation (Cambridge University Press, 2008).

    Google Scholar 

  • Atkinson, D. Temperature and organism size – a biological law for ectotherms. Adv. Ecol. Res. 25, 1–58 (1994).

    Article 

    Google Scholar 

  • Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239. https://doi.org/10.1016/s0169-5347(97)01058-6 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bergmann, C. Uber die verhaltnisse der warmeokonomie der thiere zuihrer grosse. Gottinger Studien 1, 595–708 (1847).

    Google Scholar 

  • Blanckenhorn, W. U. & Demont, M. Bergmann and converse Bergmann latitudinal clines in Arthropods: two ends of a continuum?. Integr. Comp. Biol. 44, 413–424 (2004).

    CAS 
    Article 

    Google Scholar 

  • Blackburn, T. M., Gaston, K. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).

    Article 

    Google Scholar 

  • Berrigan, D. & Charnov, E. L. Reaction norms for age and size at maturity in response to temperature—a puzzle for life historians. Oikos 70, 474–478 (1994).

    Article 

    Google Scholar 

  • Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).

    Article 

    Google Scholar 

  • Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life–history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).

    Article 

    Google Scholar 

  • Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve paremeters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    Article 

    Google Scholar 

  • Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiorboe, T. A global synthesis of seasonal temperature-size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999. https://doi.org/10.1111/geb.12460 (2016).

    Article 

    Google Scholar 

  • Kiełbasa, A., Walczyńska, A., Fiałkowska, E., Pajdak-Stós, A. & Kozłowski, J. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule. Ecol. Evol. 4, 4678–4689. https://doi.org/10.1002/ece3.1292 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55. https://doi.org/10.1111/eva.12108 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Hassall, C. Time stress and temperature explain continental variation in damselfly body size. Ecography 36, 894–903. https://doi.org/10.1111/j.1600-0587.2013.00018.x (2013).

    Article 

    Google Scholar 

  • Horne, C. R., Hirst, A. G. & Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327–335. https://doi.org/10.1111/ele.12413 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116. https://doi.org/10.1038/s41586-018-0140-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rollinson, N. & Rowe, L. Oxygen limitation at the larval stage and the evolution of maternal investment per offspring in aquatic environments. Am. Nat. 191, 604–619. https://doi.org/10.1086/696857 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Santilli, J. & Rollinson, N. Toward a general explanation for latitudinal clines in body size among chelonians. Biol. J. Lin. Soc. 124, 381–393. https://doi.org/10.1093/biolinnean/bly054 (2018).

    Article 

    Google Scholar 

  • Walczyńska, A. & Sobczyk, Ł. The underestimated role of temperature–oxygen relationship in large-scale studies on size-to-temperature response. Ecol. Evol. 7, 7434–7441. https://doi.org/10.1002/ece3.3263 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Czarnoleski, M., Ejsmont-Karabin, J., Angilletta, M. J. Jr. & Kozlowski, J. Colder rotifers grow larger but only in oxygenated waters. Ecosphere https://doi.org/10.1890/es15-00024.1 (2015).

    Article 

    Google Scholar 

  • Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U.S.A. 109, 19310–19314. https://doi.org/10.1073/pnas.1210460109 (2012).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woods, H. A. Egg-mass size and cell size: Effects of temperature on oxygen distribution. Am. Zool. 39, 244–252 (1999).

    Article 

    Google Scholar 

  • Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).

    Article 

    Google Scholar 

  • Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Evolution—Oxygen and evolution. Science 316, 557–558. https://doi.org/10.1126/science.1140273 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Verberk, W. C. E. P. & Atkinson, D. Why polar gigantism and Palaeozoic gigantism are not equivalent: Effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27, 1275–1285. https://doi.org/10.1111/1365-2435.12152 (2013).

    Article 

    Google Scholar 

  • Rollinson, N. & Rowe, L. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 72, 977–988. https://doi.org/10.1111/evo.13458 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B 277, 1937–1946. https://doi.org/10.1098/rspb.2010.0001 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frazier, M. R., Woods, H. A. & Harrison, J. F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol. Biochem. Zool. 74, 641–650. https://doi.org/10.1086/322172 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hoefnagel, K. N. & Verberk, W. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol 54, 56–65. https://doi.org/10.1016/j.jtherbio.2014.12.003 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Walczyńska, A., Labecka, A. M., Sobczyk, M., Czarnoleski, M. & Kozłowski, J. The Temperature-Size Rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature. J. Therm. Biol 54, 78–85 (2015).

    Article 

    Google Scholar 

  • Whitman, D. W. & Agrawal, A. A. in Phenotypic plasticity of insects: mechanisms and consequences (eds D.W. Whitman & T.N. Ananthakrishnan) 1–63 (Science Publishers, 2009).

  • Stauffer, J. R. & van Snik Gray, E. Phenotypic plasticity: Its role in trophic radiation and explosive speciation in cichlids (Teleostei: Cichlidae). Animal Biol. 54, 137–158 (2004).

    Article 

    Google Scholar 

  • Ishikawa, A. et al. Speciation in ninespine stickleback: Reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J. Evol. Biol. 26, 1417–1430 (2013).

    CAS 
    Article 

    Google Scholar 

  • Gabaldon, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18. https://doi.org/10.1007/s10750-016-2723-9 (2017).

    Article 

    Google Scholar 

  • Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58. https://doi.org/10.1007/s10750-016-2725-7 (2017).

    CAS 
    Article 

    Google Scholar 

  • Ortells, R., Gomez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202. https://doi.org/10.1046/j.1365-2427.2003.01159.x (2003).

    Article 

    Google Scholar 

  • Serra, M. & Fontaneto, D. in Rotifers. Aquaculture, ecology, gerontology, and ecotoxicology (eds A. Hagiwara & T. Yoshinaga) 15–34 (Springer, 2017).

  • Gomez, A., Montero-Pau, J., Lunt, D. H., Serra, M. & Campillo, S. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Mol. Ecol. 16, 3228–3240. https://doi.org/10.1111/j.1365-294X.2007.03372.x (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Montero-Pau, J., Ramos-Rodriguez, E., Serra, M. & Gomez, A. Long-term coexistence of rotifer cryptic species. PLoS ONE https://doi.org/10.1371/journal.pone.0021530 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez, A., Carmona, M. J. & Serra, M. Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia 111, 350–356. https://doi.org/10.1007/s004420050245 (1997).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Serrano, L., Serra, M. & Miracle, M. R. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186, 381–386. https://doi.org/10.1007/bf00048936 (1989).

    Article 

    Google Scholar 

  • Walczyńska, A. & Serra, M. Inter- and intraspecific relationships between performance and temperature in a cryptic species complex of the rotifer Brachionus plicatilis. Hydrobiologia 734, 17–26 (2014).

    Article 

    Google Scholar 

  • Serra, M. & Miracle, M. R. Bometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147, 83–89. https://doi.org/10.1007/bf00025729 (1987).

    CAS 
    Article 

    Google Scholar 

  • Gomez, A., Temprano, M. & Serra, M. Ecological genetics of a cyclical parthenogen in temporary habitats. J. Evol. Biol. 8, 601–622. https://doi.org/10.1046/j.1420-9101.1995.8050601.x (1995).

    Article 

    Google Scholar 

  • Walczyńska, A. & Serra, M. Species size affects hatching response to different temperature regimes in a rotifer cryptic species complex. Evol. Ecol. 28, 131–140 (2014).

    Article 

    Google Scholar 

  • Walczynska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200. https://doi.org/10.1007/s10750-017-3206-3 (2017).

    Article 

    Google Scholar 

  • Weider, L. J., Jeyasingh, P. D. & Frisch, D. Evolutionary aspects of resurrection ecology: Progress, scope, and applications-An overview. Evol. Appl. 11, 3–10. https://doi.org/10.1111/eva.12563 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Levis, N. A. & Pfennig, D. W. Evaluating “Plasticity-First” evolution in nature: Key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574. https://doi.org/10.1016/j.tree.2016.03.012 (2016).

    Article 
    PubMed 

    Google Scholar 

  • O’Rourke, N. & Hatcher, L. A step-by-step approach to using SAS® for Factor Analysis and Structural Equation Modeling 2nd edn. (SAS Institute Inc., 2013).

    Google Scholar 

  • Campillo, S., Garcia-Roger, E. M., Jose Carmona, M. & Serra, M. Local adaptation in rotifer populations. Evolut. Ecol. 25, 933–947. https://doi.org/10.1007/s10682-010-9447-5 (2011).

    Article 

    Google Scholar 

  • Gomez, A. & Carvalho, G. R. Sex, parthenogenesis and genetic structure of rotifers: Microsatellite analysis of contemporary and resting egg bank populations. Mol. Ecol. 9, 203–214. https://doi.org/10.1046/j.1365-294x.2000.00849.x (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gabaldon, C., Montero-Pau, J., Carmona, M. J. & Serra, M. Life-history variation, environmental fluctuations and competition in ecologically similar species: Modeling the case of rotifers. J. Plankton Res. 37, 953–965. https://doi.org/10.1093/plankt/fbv072 (2015).

    Article 

    Google Scholar 

  • Wetzel, R. G. Limnology. Lake and river ecosystems (Elsevier Academic Press, 2001).

    Google Scholar 

  • Kuhl, M., Cohen, Y., Dalsgaard, T., Jorgensen, B. B. & Revsbech, N. P. Micreoenvironment and photosynthesis of Zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172. https://doi.org/10.3354/meps117159 (1995).

    ADS 
    Article 

    Google Scholar 

  • Denny, M. W. Air and water. The biology and physics of life’s media (Princeton University Press, 1993).

    Book 

    Google Scholar 

  • Montero-Pau, J., Serra, M. & Gomez, A. Diapausing egg banks, lake size, and genetic diversity in the rotifer Brachionus plicatilis Muller (Rotifera, Monogononta). Hydrobiologia 796, 77–91. https://doi.org/10.1007/s10750-016-2833-4 (2017).

    CAS 
    Article 

    Google Scholar 

  • Tarazona, E., Garcia-Roger, E. M. & Carmona, M. J. Experimental evolutioin of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172. https://doi.org/10.1111/oik.04186 (2017).

    Article 

    Google Scholar 

  • Franch-Gras, L., Montero-Pau, J. & Serra, M. The effect of environmental uncertainty and diapause investment on the occurrence of specialist and generalist species. Int. Rev. Hydrobiol. 99, 125–132. https://doi.org/10.1002/iroh.201301712 (2014).

    Article 

    Google Scholar 

  • Martinez-Ruiz, C. & Garcia-Roger, E. M. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745, 111–121. https://doi.org/10.1007/s10750-014-2098-8 (2015).

    Article 

    Google Scholar 

  • Garcia-Roger, E. M. Analisis demografico de bancos de huevos diapausicos de rotiferos PhD Thesis thesis, University of Valencia, (2006).

  • Lapesa, S. Efecto de la depredación por invertebrados sobre poblaciones simpátricas de especies crípticas de rotíferos PhD thesis, University of Valencia, (2004).

  • Miracle, M. R. & Serra, M. Salinity and temperature influence in rotifer life-history characteristics. Hydrobiologia 186, 81–102. https://doi.org/10.1007/bf00048900 (1989).

    Article 

    Google Scholar 

  • Fontaneto, D., Giordani, I., Melone, G. & Serra, M. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583, 297–307. https://doi.org/10.1007/s10750-007-0573-1 (2007).

    Article 

    Google Scholar 

  • Gabaldon, C., Montero-Pau, J., Serra, M. & Carmona, M. J. Morphological similarity and ecological overlap in two rotifer species. PLoS ONE https://doi.org/10.1371/journal.pone.0057087 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gabaldon, C. & Carmona, M. J. Allocation patterns in modes of reproduction in two facultatively sexual cryptic rotifer species. J. Plankton Res. 37, 429–440. https://doi.org/10.1093/plankt/fbv012 (2015).

    Article 

    Google Scholar 

  • Garcia-Roger, E. M., Carmona, M. J. & Serra, M. Deterioration patterns in diapausing egg banks of Brachionus (Muller, 1786) rotifer species. J. Exp. Mar. Biol. Ecol. 314, 149–161. https://doi.org/10.1016/j.jembe.2004.08.023 (2005).

    Article 

    Google Scholar 

  • Lapesa, S., Snell, T. W., Fields, D. M. & Serra, M. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshw. Biol. 47, 1685–1695. https://doi.org/10.1046/j.1365-2427.2002.00926.x (2002).

    Article 

    Google Scholar 

  • Serra, M., Gomez, A. & Carmona, M. J. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387, 373–384. https://doi.org/10.1023/a:1017083820908 (1998).

    Article 

    Google Scholar 

  • Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. . 496 (Microcomputer Power, 2012).

  • Ciros-Perez, J., Gomez, A. & Serra, M. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23, 1311–1328 (2001).

  • Gomez, A., Serra, M., Carvalho, G. R. & Lunt, D. H. Speciation in ancient cryptic species complexes: Evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56, 1431–1444 (2002).

    CAS 
    Article 

    Google Scholar 

  • SAS/STAT User’s Guide (Cary NC, SAS Institute Inc., 2013).


  • Source: Ecology - nature.com

    Machine learning, harnessed to extreme computing, aids fusion energy development

    From seawater to drinking water, with the push of a button