in

Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species

[adace-ad id="91168"]
  • 1.

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117, 1–8 (2021).

    Google Scholar 

  • 4.

    Kulakowski, D. et al. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems. Ecol. Manag. 388, 120–131 (2017).

    Google Scholar 

  • 5.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 129, 1–55 (2015).

    Google Scholar 

  • 6.

    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200, 1–8 (2020).

    Google Scholar 

  • 7.

    Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Google Scholar 

  • 9.

    Sallé, A. et al. Forest decline differentially affects trophic guilds of canopy-dwelling beetles. Ann. For. Sci. 77, 86 (2020).

    Google Scholar 

  • 10.

    Beudert, B. et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272–281 (2015).

    Google Scholar 

  • 11.

    Evans, P. M. et al. Testing the relative sensitivity of 102 ecological variables as indicators of woodland condition in the New Forest, UK. Ecol. Indic. 107, 105575, 1–12 (2019).

    Google Scholar 

  • 12.

    Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Change 7, 395–402 (2017).

    Google Scholar 

  • 13.

    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

    PubMed 

    Google Scholar 

  • 14.

    Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).

    PubMed 

    Google Scholar 

  • 15.

    Moretti, M., Obrist, M. K. & Duelli, P. Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography 27, 173–186 (2004).

    Google Scholar 

  • 16.

    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121, 1–13 (2019).

    Google Scholar 

  • 17.

    Larsen, S., Chase, J. M., Durance, I. & Ormerod, S. J. Lifting the veil: Richness measurements fail to detect systematic biodiversity change over three decades. Ecology 99, 1316–1326 (2018).

    PubMed 

    Google Scholar 

  • 18.

    Cardoso, P. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).

    Google Scholar 

  • 19.

    Morinière, J. et al. A DNA barcode library for 5,200 German flies and midges (Insecta: Diptera) and its implications for metabarcoding‐based biomonitoring. Mol. Ecol. Resour. 19, 900–928 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270, 313–321 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213, 1–16 (2013).

    Google Scholar 

  • 22.

    Wang, C. et al. The ecological impact of pest-induced tree dieback on insect biodiversity in Yunnan pine plantations, China. Ecol. Manag. 491, 119173, 1–11 (2021).

    Google Scholar 

  • 23.

    Roland, J. & Taylor, P. D. Insect parasitoid species respond to forest structure at different spatial scales. Nature 386, 710–713 (1997).

    CAS 

    Google Scholar 

  • 24.

    Nguyen, L.-T.-H. et al. Bottom-up effect of water stress on the aphid parasitoid Aphidius ervi. Entomol. Gen. 38, 15–27 (2018).

    Google Scholar 

  • 25.

    Lebourgeois, F., Rathgeber, C. B. K. & Ulrich, E. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). J. Veg. Sci. 21, 364–376 (2010).

    Google Scholar 

  • 26.

    Camarero, J. J., Bigler, C., Linares, J. C. & Gil-Pelegrín, E. Synergistic effects of past historical logging and drought on the decline of Pyrenean silver fir forests. Ecol. Manag. 262, 759–769 (2011).

    Google Scholar 

  • 27.

    Ratnasingham, S. & Hebert, P. D. N. BOLD: The Barcode of Life Data system. Mol. Ecol. Notes 7, 355–364 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Hui, C. & McGeoch, M. A. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).

    PubMed 

    Google Scholar 

  • 29.

    McGeoch, M. A. et al. Measuring continuous compositional change using decline and decay in zeta diversity. Ecology 100, e02832, 1–18 (2019).

    Google Scholar 

  • 30.

    Latombe, G., McGeoch, M., Nipperess, D. & Hui, C. zetadiv: Functions to compute compositional turnover using zeta diversity (version 1.2.0) [software] https://github.com/GLatombe/zetadiv (2020).

  • 31.

    Brown, A. M. et al. The fourth-corner solution—using predictive models to understand how species traits interact with the environment. Methods Ecol. Evol. 5, 344–352 (2014).

    Google Scholar 

  • 32.

    Hartop, E., Srivathsan, A., Ronquist, F. & Meier, R. Large-scale Integrative Taxonomy (LIT): resolving the data conundrum for dark taxa. Preprint at BioRxiv https://doi.org/10.1101/2021.04.13.439467 (2021).

  • 33.

    Kortmann, M. et al. Ecology versus society: impacts of bark beetle infestations on biodiversity and restorativeness in protected areas of Central Europe. Biol. Conserv. 254, 10893, 1–9 (2021).

    Google Scholar 

  • 34.

    Thorn, S. et al. Rare species, functional groups, and evolutionary lineages drive successional trajectories in disturbed forests. Ecology 101, e02949, 1–8 (2020).

    Google Scholar 

  • 35.

    Müller, J., Noss, R. F., Bussler, H. & Brandl, R. Learning from a “benign neglect strategy” in a national park: response of saproxylic beetles to dead wood accumulation. Biol. Conserv. 143, 2559–2569 (2010).

    Google Scholar 

  • 36.

    Cours, J. et al. Contrasting responses of habitat conditions and insect biodiversity to pest- or climate-induced dieback in coniferous mountain forests. Ecol. Manag. 482, 11881, 1–14 (2021).

    Google Scholar 

  • 37.

    Herrault, P.-A. et al. Combined effects of area, connectivity, history and structural heterogeneity of woodlands on the species richness of hoverflies (Diptera: Syrphidae). Landsc. Ecol. 31, 877–893 (2016).

    Google Scholar 

  • 38.

    Leather, S. R. “Ecological Armageddon”—more evidence for the drastic decline in insect numbers. Ann. Appl. Biol. 172, 1–3 (2018).

    Google Scholar 

  • 39.

    Fleishman, E., Noss, R. & Noon, B. Utility and limitations of species richness metrics for conservation planning. Ecol. Indic. 6, 543–553 (2006).

    Google Scholar 

  • 40.

    Borges, P. A. V., Rigal, F., Ros-Prieto, A. & Cardoso, P. Increase of insular exotic arthropod diversity is a fundamental dimension of the current biodiversity crisis. Insect Conserv. Divers. 13, 508–518 (2020).

    Google Scholar 

  • 41.

    Ienco, A., Dapporto, L., Greco, S., Infusino, M. & Scalercio, S. β-diversity partitioning of moth communities within and between different forest types. Sci. Nat. 107, 8, 1–11 (2020).

    Google Scholar 

  • 42.

    Thorn, S. et al. The living dead: acknowledging life after tree death to stop forest degradation. Front. Ecol. Environ. 18, 505–512 (2020).

    Google Scholar 

  • 43.

    Arnan, X., Bosch, J., Comas, L., Gracia, M. & Retana, J. Habitat determinants of abundance, structure and composition of flying Hymenoptera communities in mountain old-growth forests. Insect Conserv. Divers. 4, 200–211 (2011).

    Google Scholar 

  • 44.

    Säterberg, T., Jonsson, T., Yearsley, J., Berg, S. & Ebenman, B. A potential role for rare species in ecosystem dynamics. Sci. Rep. 9, 11107, 1–12 (2019).

    Google Scholar 

  • 45.

    Jain, M. et al. The importance of rare species: a trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014).

    PubMed 

    Google Scholar 

  • 46.

    Soliveres, S. et al. Locally rare species influence grassland ecosystem multifunctionality. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150269, 1–10 (2016).

    Google Scholar 

  • 47.

    Heidrich, L. et al. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat. Ecol. Evol. 4, 1204–1212 (2020).

    PubMed 

    Google Scholar 

  • 48.

    Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).

    Google Scholar 

  • 49.

    Seibold, S. et al. Microclimate and habitat heterogeneity as the major drivers of beetle diversity in dead wood. J. Appl. Ecol. 53, 934–943 (2016).

    Google Scholar 

  • 50.

    Ji, Y. et al. SPIKEPIPE: a metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20, 256–267 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Sire, L. et al. The challenge of DNA barcoding saproxylic beetles in natural history collections—exploring the potential of parallel multiplex sequencing with Illumina MiSeq. Front. Ecol. Evol. 7, 495, 1–12 (2019).

    Google Scholar 

  • 52.

    Morinière, J. et al. Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix. PLoS ONE 11, e0155497, 1–14 (2016).

    Google Scholar 

  • 53.

    Ashfaq, M. et al. Insect diversity in the Saharo-Arabian region: revealing a little-studied fauna by DNA barcoding. PLoS ONE 13, e0199965, 1–16 (2018).

    Google Scholar 

  • 54.

    Karlsson, D., Hartop, E., Forshage, M., Jaschhof, M. & Ronquist, F. The Swedish Malaise trap project: a 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255, 1–35 (2020).

    Google Scholar 

  • 55.

    Russo, L., Stehouwer, R., Heberling, J. M. & Shea, K. The composite insect trap: an innovative combination trap for biologically diverse sampling. PLoS ONE 6, e21079, 1–7 (2011).

    Google Scholar 

  • 56.

    Lambert, J., Drenou, C., Denux, J.-P., Balent, G. & Cheret, V. Monitoring forest decline through remote sensing time series analysis. GIScience Remote Sens 50, 437–457 (2013).

    Google Scholar 

  • 57.

    Lemmon, P. E. A spherical densiometer for estimating forest overstory density. For. Sci. 2, 314–320 (1956).

    Google Scholar 

  • 58.

    Larrieu, L. & Gonin, P. L’indice de biodiversité potentielle (ibp): une méthode simple et rapide pour évaluer la biodiversité potentielle des peuplements forestiers. Rev. For. Fr. 6, 727–748 (2008).

    Google Scholar 

  • 59.

    Larsson, T.-B. in Criteria and Indicators for Sustainable Forest Management at the Forest Management Unit Level (eds. Franc, A., Laroussinie, O. & Karjalainen, T.) Vol. 38, 75–81 (European Forest Institute Proceeding, 2001).

  • 60.

    Gosselin, F. & Larrieu, L. Developing and using statistical tools to estimate observer effect for ordered class data: the case of the IBP (Index of Biodiversity Potential). Ecol. Indic. 110, 105884, 1–10 (2020).

    Google Scholar 

  • 61.

    Elbrecht, V., Peinert, B. & Leese, F. Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol. Evol. 7, 6918–6926 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Leray, M., Haenel, Q. & Bourlat, S. J. in Marine Genomics (ed. Bourlat, S. J.) Vol. 1452, 209–218 (Springer New York, 2016).

  • 63.

    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34, 1–14 (2013).

    Google Scholar 

  • 64.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6, 1–7 (2014).

    Google Scholar 

  • 66.

    Illumina. Illumina two-channel SBS sequencing technology. Pub. No. 770-2013-054. https://www.well.ox.ac.uk/ogc/wp-content/uploads/2017/09/techspotlight_two-channel_sbs.pdf (2016).

  • 67.

    Knittel, T. & Picard, D. PCR with degenerate primers 9 containing deoxyinosine fails with PFU DNA polumerase. Genome Res. 2, 346–347 (1993).

    CAS 

    Google Scholar 

  • 68.

    Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).

    Google Scholar 

  • 69.

    Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421, 1–10 (2009).

    Google Scholar 

  • 70.

    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88, 1–7 (2016).

    Google Scholar 

  • 71.

    Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]. https://github.com/najoshi/sickle (2011).

  • 72.

    Nurk, S. et al. in RECOMB 2013: Research in Computational Molecular Biology (eds. Deng, M., Jiang, R., Sun, F. & Zhang, X.) Vol. 7821, 158–170 (Springer International Publishing, 2013).

  • 73.

    Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinforma. 13, 31, 1–7 (2012).

    Google Scholar 

  • 74.

    Zepeda-Mendoza, M. L., Bohmann, K., Carmona Baez, A. & Gilbert, M. T. P. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses. BMC Res. Notes 9, 255, 1–13 (2016).

    Google Scholar 

  • 75.

    R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2017).

  • 76.

    Renkonen, O. Statistisch-ökologische Untersuchungen über die terrestische Käferwelt der finnischen Bruchmoore. Ann. Bot. Soc. Zool.-Bot. Fenn. Vanamo 6, 1–231 (1938).

    Google Scholar 

  • 77.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584, 1–22 (2016).

    Google Scholar 

  • 78.

    Hebert, P. D. N., Ratnasingham, S. & de Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270, S96–S99 (2003).

    CAS 

    Google Scholar 

  • 79.

    Boyer, F. et al. OBITOOLS: a UNIX-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1188, 1–11 (2017).

    Google Scholar 

  • 81.

    Chamberlain, S. bold: Interface to BOLD systems API. (version 1.1.0) [software] https://CRAN.R-project.org/package=bold (2020).

  • 82.

    Godfray, C. H. J. Parasitoids: Behavioral and Evolutionary Ecology 472 pp (Princeton University Press, 1994).

  • 83.

    Bouget, C., Brustel, H. & Zagatti, P. The French Information System on Saproxylic BEetle Ecology (FRISBEE): an ecological and taxonomical database to help with the assessment of forest conservation status. Rev. D’Ecologie Terre Vie Société Natl. Prot. Nat. 63, 33–36 (2008).

  • 84.

    Schmidt-Kloiber, A. & Hering, D. An online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).

    Google Scholar 

  • 85.

    Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385 (2020).

    Google Scholar 

  • 86.

    Hsieh, T. C., Ma, K. H. & Chao, iNEXT: iNterpolation and EXTrapolation for species diversity (version 2.0.20) [software] http://chao.stat.nthu.edu.tw/wordpress/software-download/ (2020).

  • 87.

    Oksanen, J. et al. vegan: Community ecology package (version 2.5-6) [software] https://CRAN.R-project.org/package=vegan (2020).

  • 88.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, 2019).

  • 89.

    Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data (version 4.3.1) [software] https://CRAN.R-project.org/package=mvabund (2020).

  • 90.

    Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).

    Google Scholar 

  • 91.

    De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).

    Google Scholar 

  • 92.

    Gaston, K. J. in Rarity Vol. 13, 1–21 (Springer, 1994).

  • 93.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217, 1–11 (2013).

    Google Scholar 

  • 94.

    Akaike, H. Information theory and an extension of the maximum likelihood principle. in Second International Symposium on Information Theory 267–281 (1973).

  • 95.

    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Google Scholar 

  • 96.

    Sire, L. et al. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Zenodo. https://doi.org/10.5281/zenodo.5653307 (2021).

  • 97.

    Sire, L. et al. Supplementary Data—Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. figshare. Dataset https://doi.org/10.6084/m9.figshare.16975636.v1 (2021).


  • Source: Ecology - nature.com

    Biodiversity conservation in Afghanistan under the returned Taliban

    Leaf plasticity across wet and dry seasons in Croton blanchetianus (Euphorbiaceae) at a tropical dry forest