in

Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis

[adace-ad id="91168"]
  • Riley M, Gordon D. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–33.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Griffin A, West S, Buckling A. Cooperation and competition in pathogenic bacteria. Nature. 2004;430:1024–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Velicer G, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brockhurst M, Habets M, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.

    PubMed 
    Article 

    Google Scholar 

  • Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972;36:478–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:e1002141.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hölscher T, Kovács ÁT. Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol. 2017;19:2537–45.

    PubMed 
    Article 

    Google Scholar 

  • Kearns D. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nogales J, Bernabéu-Roda L, Cuéllar V, Soto M. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol. 2012;194:2027–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Murray T, Kazmierczak B. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2008;190:2700–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kinsinger R, Shirk M, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, et al. A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. MBio. 2015;6:e00581–15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012;85:51–66.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 2013;110:13600–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Seminara A, Angelini T, Wilking J, Vlamakis H, Ebrahim S, Kolter R, et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci USA. 2012;109:1116–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Rep. 2016;14:22–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sexton D, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun. 2017;8:230.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Xavier J, Kim W, Foster K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79:166–79.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tai JSB, Mukherjee S, Nero T, Olson R, Tithof J, Nadell CD, et al. Social evolution of shared biofilm matrix components. Proc Natl Acad Sci USA. 2022;119:e2123469119.

    PubMed 
    Article 

    Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 2006;59:1229–38.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martin M, Dragoš A, Hölscher T, Maróti G, Bálint B, Westermann M, et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat Commun. 2017;8:15127.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–13.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Martin M, Dragoš A, Schäfer D, Maróti G, Kovács ÁT. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J. 2020;14:2302–12.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems. 2020;5:e00425–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kovács ÁT, Dragoš A. Evolved Biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J Mol Biol. 2019;431:4749–59.

  • Dragos A, Lakshmanan N, Martin M, Horvath B, Maroti G, Falcon Garcia C, et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol. 2018;94:fix155.

    Article 
    CAS 

    Google Scholar 

  • Dragoš A, Martin M, Garcia CF, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun. 2021;12:2324.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gore J, Youk H, Van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hölscher T, Dragoš A, Gallegos-Monterrosa R, Martin M, Mhatre E, Richter A, et al. Monitoring spatial segregation in surface colonizing microbial populations. J Vis Exp. 2016;2016:e54752.

    Google Scholar 

  • Morris R, Schor M, Gillespie R, Ferreira A, Baldauf L, Earl C, et al. Natural variations in the biofilm-associated protein BslA from the genus Bacillus. Sci Rep. 2017;7:6730.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One. 2013;8:e62044.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lenski RE, Rose M, Simpson S, Tadler S. Long-term experimental evolution in Escherichia coli. I Adaptation and divergence during 2,000 generations. Am Nat. 1991;138:1315–41.

    Article 

    Google Scholar 

  • Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Slatkin M, Excoffier L. Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics. 2012;191:171–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • MacLean R, Fuentes-Hernandez A, Greig D, Hurst L, Gudelj I. A mixture of ‘cheats’ and ‘co-operators’ can enable maximal group benefit. PLoS Biol. 2010;8:e1000486.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kearns DB. Division of labour during Bacillus subtilis biofilm formation. Mol Microbiol. 2008;67:229–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems. 2021;6:e00770–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stefanic P, Mandic-Mulec I. Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol. 2009;191:1756–64.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Even-Tov E, Omer Bendori S, Valastyan J, Ke X, Pollak S, Bareia T, et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 2016;14:e1002386.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall N. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Aframian N, Eldar A. A bacterial tower of Babel: Quorum-Sensing signaling diversity and its evolution. Annu Rev Microbiol. 2020;74:587–606.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem. 2020;16:2983–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25:257–66.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kovács ÁT. Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol. 2014;5:649.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang F, Kwan A, Xu A, Süel G. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One. 2015;10:e0132948.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Bruce J, West S, Griffin A. Functional amyloids promote retention of public goods in bacteria. Proc Biol Sci. 2019;286:20190709.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma L, Conover M, Lu H, Parsek M, Bayles K, Wozniak D. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6:151–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373:eabi4882.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lozano-Andrade CN, Nogueira CG, Wibowo M, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. bioRxiv. 2022. https://doi.org/10.1101/2022.01.10.475645.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

    Getting the carbon out of India’s heavy industries