in

Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes

[adace-ad id="91168"]
  • Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbial community function at the single-cell level. Nat Rev Microbiol. 2020;18:241–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, et al. The 2018 correlative microscopy techniques roadmap. J Phys D: Appl Phys. 2018;51:443001.

    Article 
    CAS 

    Google Scholar 

  • Endesfelder U. Advances in correlative single-molecule localization microscopy and electron microscopy. NanoBioImaging. 2015;1:29–37.

    Article 

    Google Scholar 

  • Osborn M, Webster RE, Weber K. Individual microtubules viewed by immunofluorescence and electron microscopy in the same PtK2 cell. J Cell Biol. 1978;77:27–38.

    Article 

    Google Scholar 

  • Webster RE, Osborn M, Weber K. Visualization of the same PtK2 cytoskeletons by both immunofluorescence and low power electron microscopy. Exp Cell Res. 1978;117:47–61.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Perkovic M, Kunz M, Endesfelder U, Bunse S, Wigge C, Yu Z, et al. Correlative Light- and Electron Microscopy with chemical tags. J Struct Biol. 2014;186:205–13.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lange F, Agui-Gonzalez P, Riedel D, Phan NTN, Jakobs S, Rizzoli SO. Correlative fluorescence microscopy, transmission electron microscopy and secondary ion mass spectrometry (CLEM-SIMS) for cellular imaging. Plos One. 2021;16:e0240768.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pirozzi NM, Hoogenboom JP, Giepmans BNG. ColorEM: analytical electron microscopy for element-guided identification and imaging of the building blocks of life. Histochem Cell Biol. 2018;150:509–20.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Loussert-Fonta C, Toullec G, Paraecattil AA, Jeangros Q, Krueger T, Escrig S, et al. Correlation of fluorescence microscopy, electron microscopy, and NanoSIMS stable isotope imaging on a single tissue section. Commun Biol. 2020;3:362.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Joosten B, Willemse M, Fransen J, Cambi A, van den Dries K. Super-resolution correlative light and electron microscopy (SR-CLEM) reveals novel ultrastructural insights into dendritic cell podosomes. Front Immunol. 2018;9:1–14.

    Article 
    CAS 

    Google Scholar 

  • Woehl TJ, Kashyap S, Firlar E, Perez-Gonzalez T, Faivre D, Trubitsyn D, et al. Correlative electron and fluorescence microscopy of magnetotactic bacteria in liquid: toward in vivo imaging. Sci Rep. 2014;4:6854.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li J, Zhang H, Menguy N, Benzerara K, Wang F, Lin X, et al. Single-cell resolution of uncultured magnetotactic bacteria via fluorescence-coupled electron microscopy. Appl Environ Microbiol. 2017;83:e00409–17.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian XX, Santini CL, Kosta A, Menguy N, Le Guenno H, Zhang W, et al. Juxtaposed membranes underpin cellular adhesion and display unilateral cell division of multicellular magnetotactic prokaryotes. Environ Microbiol. 2020;22:1481–94.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McGlynn SE, Chadwick GL, O’Neill A, Mackey M, Thor A, Deerinck TJ, et al. Subgroup characteristics of marine methane-oxidizing ANME-2 archaea and their syntrophic partners revealed by integrated multimodal analytical microscopy. Appl Environ Microbiol. 2018;84:e00399–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hao L, McIlroy SJ, Kirkegaard RH, Karst SM, Fernando WEY, Aslan H, et al. Novel prosthecate bacteria from the candidate phylum Acetothermia. ISME J. 2018;126:2225–37.

    Article 
    CAS 

    Google Scholar 

  • Hapca S, Baveye PC, Wilson C, Lark RM, Otten W. Three-dimensional mapping of soil chemical characteristics at micrometric scale by combining 2D SEM-EDX data and 3D X-Ray CT images. PLoS One. 2015;10:e0137205.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Schluter S, Eickhorst T, Mueller CW. Correlative imaging reveals holistic view of soil microenvironments. Environ Sci Technol. 2019;53:829–37.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Marlow J, Spietz R, Kim KY, Ellisman M, Girguis P, Hatzenpichler R. Spatially resolved correlative microscopy and microbial identification reveal dynamic depth- and mineral-dependent anabolic activity in salt marsh sediment. Environ Microbiol. 2021;23:4756–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Musat N, Musat F, Weber PK, Pett-Ridge J. Tracking microbial interactions with NanoSIMS. Curr Opin Biotechnol. 2016;41:114–21.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA. 2015;112:E194–203.

    CAS 
    PubMed 

    Google Scholar 

  • Huang WE, Stoecker K, Griffiths R, Newbold L, Daims H, Whiteley AS, et al. Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol. 2007;9:1878–89.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evol Microbiol. 2020;70:5972–6016.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keim CN, Martins JL, de Barros HL, Lins U, MF Structure, behavior, ecology and diversity of multicellular magnetotactic prokaryotes. Magnetoreception and magnetosomes in bacteria. (Springer, Berlin, Heidelberg, 2006):103–32.

  • Abreu F, Silva KT, Martins JL, Lins U. Cell viability in magnetotactic multicellular prokaryotes. Int Microbiol. 2006;9:267–72.

    CAS 
    PubMed 

    Google Scholar 

  • Abreu F, Martins JL, Silveira TS, Keim CN, de Barros HG, Filho FJ, et al. ‘Candidatus Magnetoglobus multicellularis’, a multicellular, magnetotactic prokaryote from a hypersaline environment. Int J Syst Evol Microbiol. 2007;57:1318–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abreu F, Silva KT, Leao P, Guedes IA, Keim CN, Farina M, et al. Cell adhesion, multicellular morphology, and magnetosome distribution in the multicellular magnetotactic prokaryote Candidatus Magnetoglobus multicellularis. Microsc Microanal. 2013;19:535–43.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Faivre D, Schuler D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108:4875–98.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Greening C, Lithgow T. Formation and function of bacterial organelles. Nat Rev Microbiol. 2020;18:677–89.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uebe R, Schuler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shapiro OH, Hatzenpichler R, Buckley DH, Zinder SH, Orphan VJ. Multicellular photo-magnetotactic bacteria. Env Microbiol Rep. 2011;3:233–8.

    Article 

    Google Scholar 

  • Simmons SL, Edwards KJ. Unexpected diversity in populations of the many-celled magnetotactic prokaryote. Environ Microbiol. 2007;9:206–15.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wilbanks EG, Jaekel U, Salman V, Humphrey PT, Eisen JA, Facciotti MT, et al. Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol. 2014;16:3398–415.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wilbanks EG, Salman-Carvalho V, Jaekel U, Humphrey PT, Eisen JA, Buckley DH, et al. The Green Berry Consortia of the Sippewissett Salt Marsh: millimeter-sized aggregates of diazotrophic unicellular cyanobacteria. Front Microbiol. 2017;8:1–12.

    Article 

    Google Scholar 

  • Larsen S, Nielsen LP, Schramm A. Cable bacteria associated with long-distance electron transport in New England salt marsh sediment. Env Microbiol Rep. 2015;7:175–9.

    CAS 
    Article 

    Google Scholar 

  • Salman V, Yang TT, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mackey KRM, Hunter-Cevera K, Britten GL, Murphy LG, Sogin ML, Huber JA. Seasonal succession and spatial patterns of synechococcus microdiversity in a salt marsh estuary revealed through 16S rRNA gene oligotyping. Front Microbiol. 2017;8.

  • Bowen JL, Morrison HG, Hobbie JE, Sogin ML. Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME J. 2012;6:2014–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lewis AT, Gaifulina R, Isabelle M, Dorney J, Woods ML, Lloyd GR, et al. Mirrored stainless steel substrate provides improved signal for Raman spectroscopy of tissue and cells. J Raman Spectrosc. 2017;48:119–25.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eder SH, Gigler AM, Hanzlik M, Winklhofer M. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry. PLoS One. 2014;9:e107356.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stoecker K, Dorninger C, Daims H, Wagner M. Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Appl Environ Microbiol. 2010;76:922–6.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Daims H, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. Taylor & Francis, 2004; Mol Microbial Ecol:208–28.

  • Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol. 1999;22:434–44.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Stahl DA, Amann RI. Development and application of nucleic acid probes. Stackebrandt E and Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. John Wiley & Sons; 1991. p. 205–48.

  • Behrens S, Ruhland C, Inacio J, Huber H, Fonseca A, Spencer-Martins I, et al. In situ accessibility of small-subunit rRNA of members of the domains Bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl Environ Microbiol. 2003;69:1748–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wallner G, Amann R, Beisker W. Optimizing fluorescent insitu hybridization with ribosomal-Rna-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 1993;14:136–43.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zimmermann M, Escrig S, Hubschmann T, Kirf MK, Brand A, Inglis RF, et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol. 2015;6:243.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grieb A, Bowers RM, Oggerin M, Goudeau D, Lee J, Malmstrom RR, et al. A pipeline for targeted metagenomics of environmental bacteria. Microbiome. 2020;8:21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer NR, Fortney JL, Dekas AE. NanoSIMS sample preparation decreases isotope enrichment: magnitude, variability and implications for single-cell rates of microbial activity. Environ Microbiol. 2021;23:81–98.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Musat N, Stryhanyuk H, Bombach P, Adrian L, Audinot JN, Richnow HH. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst Appl Microbiol. 2014;37:267–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amann R, Fuchs BM. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol. 2008;6:339–48.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lee KS, Landry Z, Pereira FC, Wagner M, Berry D, Huang WE, et al. Raman microspectroscopy for microbiology. Nat Rev Methods Primers. 2021;1:1–25.

    Article 
    CAS 

    Google Scholar 

  • Wang Y, Huang WE, Cui L, Wagner M. Single-cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol. 2016;41:34–42.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol. 2015;91:1–16.

    Article 
    CAS 

    Google Scholar 

  • Li J, Liu P, Tamaxia A, Zhang H, Liu Y, Wang J, et al. Diverse intracellular inclusion types within magnetotactic bacteria: implications for biogeochemical cycling in aquatic environments. J Geophys Res Biogeosci. 2021;126:e2021JG006310.

    CAS 

    Google Scholar 

  • Matanfack GA, Taubert M, Guo S, Houhou R, Bocklitz T, Kusel K, et al. Influence of carbon sources on quantification of deuterium incorporation in heterotrophic bacteria: a Raman-stable isotope labeling approach. Anal Chem. 2020;92:11429–37.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amor M, Tharaud M, Gelabert A, Komeili A. Single-cell determination of iron content in magnetotactic bacteria: implications for the iron biogeochemical cycle. Environ Microbiol. 2020;22:823–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Farina M, Esquivel DMS, Debarros HGPL. Magnetic iron-sulfur crystals from a magnetotactic microorganism. Nature. 1990;343:256–8.

    CAS 
    Article 

    Google Scholar 

  • Wenter R, Wanner G, Schuler D, Overmann J. Ultrastructure, tactic behaviour and potential for sulfate reduction of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol. 2009;11:1493–505.

    PubMed 
    Article 

    Google Scholar 

  • Zhang R, Chen YR, Du HJ, Zhang WY, Pan HM, Xiao T, et al. Characterization and phylogenetic identification of a species of spherical multicellular magnetotactic prokaryotes that produces both magnetite and greigite crystals. Res Microbiol. 2014;165:481–9.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, et al. Diversity and characterization of multicellular magnetotactic prokaryotes from coral reef habitats of the Paracel Islands, South China Sea. Front Microbiol. 2018;9:2135.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bourdoiseau J-A, Jeannin M, Rémazeilles C, Sabot R, Refait P. The transformation of mackinawite into greigite studied by Raman spectroscopy. J Raman Spectrosc. 2011;42:496–504.

    CAS 
    Article 

    Google Scholar 

  • Mann S, Sparks NH, Board RG. Magnetotactic bacteria: microbiology, biomineralization, palaeomagnetism and biotechnology. Adv Microb Physiol. 1990;31:125–81.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Posfai M, Buseck PR, Bazylinski DA, Frankel RB. Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am Mineral. 1998;83:1469–81.

    CAS 
    Article 

    Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smriga S, Samo TJ, Malfatti F, Villareal J, Azam F. Individual cell DNA synthesis within natural marine bacterial assemblages as detected by ‘click’ chemistry. Aquat Microb Ecol. 2014;72:269–80.

    Article 

    Google Scholar 

  • Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR. (D)-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem Biol. 2013;8:500–5.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Keim CN, Abreu F, Lins U, Lins de Barros H, Farina M. Cell organization and ultrastructure of a magnetotactic multicellular organism. J Struct Biol. 2004;145:254–62.

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Kerry Emanuel: A climate scientist and meteorologist in the eye of the storm

    Better living through multicellular life cycles