in

Drivers of variation in occurrence, abundance, and behaviour of sharks on coral reefs

[adace-ad id="91168"]
  • 1.

    Bird, C. S. et al. A global perspective on the trophic geography of sharks. Nat. Ecol. Evol. 2(2), 299–305. https://doi.org/10.1038/s41559-017-0432-z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R. & Lotze, H. K. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13(8), 1055–1071. https://doi.org/10.1111/j.1461-0248.2010.01489.x (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hammerschlag, N., Schmitz, O. J., Flecker, A. S., Lafferty, K. D., Sih, A., Atwood, T. B., Gallagher, A. J., Irschick, D. J., Skubel, R., & Cooke, S. J. Ecosystem function and services of aquatic predators in the anthropocene. In Trends in Ecology and Evolution Vol. 34, Issue 4, 369–383. (Elsevier Ltd, 2019). https://doi.org/10.1016/j.tree.2019.01.005

  • 4.

    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23(4), 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Williams, J. J., Papastamatiou, Y. P., Caselle, J. E., Bradley, D. & Jacoby, D. M. P. Mobile marine predators: An understudied source of nutrients to coral reefs in an unfished atoll. Proc. R. Soc. B Biol. Sci. 285(1875), 20172456. https://doi.org/10.1098/rspb.2017.2456 (2018).

    Article 

    Google Scholar 

  • 6.

    Dulvy, N. K., Simpfendorfer, C. A., Davidson, L. N. K., Fordham, S. V., Bräutigam, A., Sant, G., & Welch, D. J. Challenges and priorities in shark and ray conservation. In Current Biology, Vol. 27, Issue 11, R565–R572. (Cell Press, 2017). https://doi.org/10.1016/j.cub.2017.04.038.

  • 7.

    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583(7818), 801–806. https://doi.org/10.1038/s41586-020-2519-y (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish. 20(2), 255–267. https://doi.org/10.1111/faf.12337 (2019).

    Article 

    Google Scholar 

  • 9.

    Albano, P. S. et al. Successful parks for sharks: No-take marine reserve provides conservation benefits to endemic and threatened sharks off South Africa. Biol. Conserv. 261, 109302 (2021).

    Article 

    Google Scholar 

  • 10.

    Bond, M. E. et al. Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the Mesoamerican Barrier reef. PLOS ONE 7(3), e32983. https://doi.org/10.1371/journal.pone.0032983 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Ruppert, J. L. W. et al. Human activities as a driver of spatial variation in the trophic structure of fish communities on Pacific coral reefs. Glob. Change Biol. 24(1), e67–e79. https://doi.org/10.1111/gcb.13882 (2018).

    Article 

    Google Scholar 

  • 12.

    Valdivia, A., Cox, C. E. & Bruno, J. F. Predatory fish depletion and recovery potential on Caribbean reefs. Sci. Adv. 3, e1601303 (2017).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30(3), 480–489. https://doi.org/10.1016/j.cub.2019.12.005 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021).

  • 15.

    Wickham, H, ggplot2: Elegant Graphics for Data Analysis. Springer, New York. ISBN 978-3-319-24277-4 (2016).

  • 16.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5(1), 144–161 (2013).

    Article 

    Google Scholar 

  • 17.

    Desbiens, A. A. et al. Revisiting the paradigm of shark-driven trophic cascades in coral reef ecosystems. Ecology 102(4), e03303. https://doi.org/10.1002/ecy.3303 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Morrissey, J. E. & Gruber, S. H. Habitat selection by juvenile lemon sharks, Negaprion brevirostris. Environ. Biol. Fishes 38, 311–319 (1993).

    Article 

    Google Scholar 

  • 19.

    Clementi, G. et al. Anthropogenic pressures on reef-associated sharks in jurisdictions with and without directed shark fishing. Mar. Ecol. Prog. Ser. 661, 175–186. https://doi.org/10.3354/meps13607 (2021).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Juhel, J. B. et al. Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior. Sci. Rep. 9(1), 1–11. https://doi.org/10.1038/s41598-018-37145-x (2019).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Goetze, J. S. et al. Fish wariness is a more sensitive indicator to changes in fishing pressure than abundance, length or biomass. Ecol. Appl. 27, 1178–1189 (2017).

    Article 

    Google Scholar 

  • 22.

    Mitchell, J. D. et al. Quantifying shark depredation in a recreational fishery in the Ningaloo Marine Park and Exmouth Gulf, Western Australia. Mar. Ecol. Prog. Ser. 587, 141–157. https://doi.org/10.3354/meps12412 (2018).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Mitchell, J. D. et al. A novel experimental approach to investigate the potential for behavioural change in sharks in the context of depredation. J. Exp. Mar. Biol. Ecol. 530–531, 151440. https://doi.org/10.1016/j.jembe.2020.151440 (2020).

    Article 

    Google Scholar 

  • 24.

    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Cons. 220, 308–319. https://doi.org/10.1016/j.biocon.2018.01.010 (2018).

    Article 

    Google Scholar 

  • 25.

    Bond, M. E., Albanese, J. V., Heithaus, E. A. B. M. R. & Cerrato, R. D. G. R. Top predators induce habitat shifts in prey within marine protected areas. Oecologia 190(2), 375–385. https://doi.org/10.1007/s00442-019-04421-0 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Lester, E. K. et al. Relative influence of predators, competitors and seascape heterogeneity on behaviour and abundance of coral reef mesopredators. Oikos 130, 2239–2249. https://doi.org/10.1111/oik.08463 (2021).

    Article 

    Google Scholar 

  • 27.

    Phenix, L. et al. Evaluating the effects of large marine predators on mobile prey behavior across subtropical reef systems. Ecol. Evol. 9, 13740–13751 (2019).

    Article 

    Google Scholar 

  • 28.

    Shea, B. D. et al. Effects of exposure to large sharks on the abundance and behavior of mobile prey fishes along a temperate coastal gradient. PLOS ONE 15(3), e0230308. https://doi.org/10.1371/journal.pone.0230308 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Sherman, C. S., Heupel, M. R., Moore, S. K., Chin, A. & Simpfendorfer, C. A. When sharks are away, rays will play: Effects of top predator removal in coral reef ecosystems. Mar. Ecol. Prog. Ser. 641, 145–157. https://doi.org/10.3354/meps13307 (2020).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Ryan, K. L., Hall, N. G., Lai, E. K., Smallwood, C. B., Tate, A., Taylor, S. M., & Wise, B. S. Statewide Survey of Boat-Based Recreational Fishing in Western Australia 2017/18, 8. Fisheries Research Report No. 297 (2019).

  • 31.

    Cresswell, A. K. et al. Disentangling the response of fishes to recreational fishing over 30 years within a fringing coral reef reserve network. Biol. Cons. 237, 514–524. https://doi.org/10.1016/j.biocon.2019.06.023 (2019).

    Article 

    Google Scholar 

  • 32.

    Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26(6), 3525–3538. https://doi.org/10.1111/gcb.15065 (2020).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Goetze, J. S., & Fullwood, L. A. F. Fiji’s largest marine reserve benefits reef sharks. In Coral Reefs Vol. 32, Issue 1, 121–125. (Springer, 2013). https://doi.org/10.1007/s00338-012-0970-4.

  • 34.

    Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55(2), 673–683. https://doi.org/10.1111/1365-2664.13007 (2018).

    Article 

    Google Scholar 

  • 35.

    Birt, M. J. et al. Isolated reefs support stable fish communities with high abundances of regionally fished species. Ecol. Evol. 11(9), 4701–4718. https://doi.org/10.1002/ece3.7370 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Fitzpatrick, R. et al. A comparison of the seasonal movements of tiger sharks and green turtles provides insight into their predator-prey relationship. PLOS ONE 7(12), e51927. https://doi.org/10.1371/journal.pone.0051927 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Mourier, J. et al. Extreme inverted trophic pyramid of reef sharks supported by spawning groupers. Curr. Biol. 26(15), 2011–2016. https://doi.org/10.1016/j.cub.2016.05.058 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Braccini, M., Molony, B. & Blay, N. Patterns in abundance and size of sharks in northwestern Australia: Cause for optimism. ICES J. Mar. Sci. 77(1), 72–82. https://doi.org/10.1093/icesjms/fsz187 (2020).

    Article 

    Google Scholar 

  • 39.

    Holmes, T., Rule, M., Bancroft, K., Shedrawi, G., Murray, K., Wilson, S., & Kendrick, A. Ecological Monitoring in the Ningaloo Marine Reserves 2017 (2017).

  • 40.

    Martín, G., Espinoza, M., Heupel, M. & Simpfendorfer, C. A. Estimating marine protected area network benefits for reef sharks. J. Appl. Ecol. 57(10), 1969–1980. https://doi.org/10.1111/1365-2664.13706 (2020).

    Article 

    Google Scholar 

  • 41.

    Ferreira, L. C. et al. Crossing latitudes-long-distance tracking of an apex predator. PLOS ONE 10(2), e0116916. https://doi.org/10.1371/journal.pone.0116916 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. 74(3), 481–498. https://doi.org/10.1017/S0025315400047615 (1994).

    Article 

    Google Scholar 

  • 43.

    Stobart, B. et al. Performance of baited underwater video: Does it underestimate abundance at high population densities?. PLOS ONE 10(5), e0127559. https://doi.org/10.1371/journal.pone.0127559 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Papastamatiou, Y. P., Lowe, C. G., Caselle, J. E. & Friedlander, A. M. Scale-dependent effects of habitat on movements and path structure of reef sharks at a predator-dominated atoll. Ecology 90(4), 996–1008 (2009).

    Article 

    Google Scholar 

  • 45.

    Rizzari, J. R., Frisch, A. J. & Magnenat, K. A. Diversity, abundance, and distribution of reef sharks on outer-shelf reefs of the Great Barrier Reef Australia. Mar. Biol. 161(12), 2847–2855. https://doi.org/10.1007/s00227-014-2550-3 (2014).

    Article 

    Google Scholar 

  • 46.

    Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293. https://doi.org/10.3354/meps08581 (2010).

    ADS 
    Article 

    Google Scholar 

  • 47.

    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of marine park zoning. PLOS ONE 9(9), e106885. https://doi.org/10.1371/journal.pone.0106885 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Mourier, J., Planes, S. & Buray, N. Trophic interactions at the top of the coral reef food chain. Coral Reefs 32(1), 285. https://doi.org/10.1007/s00338-012-0976-y (2013).

    ADS 
    Article 

    Google Scholar 

  • 49.

    Raoult, V., Broadhurst, M. K., Peddemors, V. M., Williamson, J. E. & Gaston, T. F. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. J. Fish Biol. 95(6), 1430–1440. https://doi.org/10.1111/jfb.14160 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Andrzejaczek, S. et al. Biologging tags reveal links between fine-scale horizontal and vertical movement behaviors in tiger sharks (Galeocerdo cuvier). Front. Mar. Sci. 6(May), 1–13. https://doi.org/10.3389/fmars.2019.00229 (2019).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Andrzejaczek, S. et al. Depth-dependent dive kinematics suggest cost-efficient foraging strategies by tiger sharks. R. Soc. Open Sci. 7(8), 200789. https://doi.org/10.1098/rsos.200789 (2020).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Brooks, E. J., Sloman, K. A., Sims, D. W. & Danylchuk, A. J. Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endang. Species Res. 13(3), 231–243. https://doi.org/10.3354/esr00331 (2011).

    Article 

    Google Scholar 

  • 53.

    Santana-Garcon, J. et al. Calibration of pelagic stereo-BRUVs and scientific longline surveys for sampling sharks. Methods Ecol. Evol. 5(8), 824–833. https://doi.org/10.1111/2041-210X.12216 (2014).

    Article 

    Google Scholar 

  • 54.

    Barnett, A., Abrantes, K. G., Seymour, J. & Fitzpatrick, R. Residency and spatial use by reef sharks of an isolated seamount and its implications for conservation. PLOS ONE 7(5), e36574. https://doi.org/10.1371/journal.pone.0036574 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Papastamatiou, Y. P. et al. Activity seascapes highlight central place foraging strategies in marine predators that never stop swimming. Mov. Ecol. 6(1), 1–15. https://doi.org/10.1186/s40462-018-0127-3 (2018).

    Article 

    Google Scholar 

  • 56.

    Vianna, G. M. S., Meekan, M. G., Meeuwig, J. J. & Speed, C. W. Environmental influences on patterns of vertical movement and site fidelity of grey reef sharks (Carcharhinus amblyrhynchos) at aggregation sites. PLOS ONE 8(4), e60331. https://doi.org/10.1371/journal.pone.0060331 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Lear, K. O., Whitney, N. M., Morris, J. J. & Gleiss, A. C. Temporal niche partitioning as a novel mechanism promoting co-existence of sympatric predators in marine systems. Proc. R. Soc. B: Biol. Sci. 288(1954), 20210816. https://doi.org/10.1098/rspb.2021.0816 (2021).

    Article 

    Google Scholar 

  • 58.

    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572(7770), 461–466. https://doi.org/10.1038/s41586-019-1444-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Langlois, T. et al. A field and video annotation guide for baited remote underwater stereo-video surveys of demersal fish assemblages. Methods Ecol. Evol. 11(11), 1401–1409. https://doi.org/10.1111/2041-210X.13470 (2020).

    Article 

    Google Scholar 

  • 60.

    Lin, X. & Zhang, D. Inference in generalized additive mixed models by using smoothing splines. J. R. Stat. Soc. 61(2), 381–400 (1999).

    MathSciNet 
    Article 

    Google Scholar 

  • 61.

    Fisher, R., Wilson, S. K., Sin, T. M., Lee, A. C. & Langlois, T. J. A simple function for full-subsets multiple regression in ecology with R. Ecol. Evol. 8(12), 6104–6113. https://doi.org/10.1002/ece3.4134 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Mullahy, J. Specification and testing of some modified count data models. J. Econom. 33, 341–365 (1986).

    MathSciNet 
    Article 

    Google Scholar 

  • 63.

    Tweedie, M. An index which distinguishes between some important exponential families. In Statistics: Applications and New Directions: Proceedings of the Indian Statistical Institute Golden Jubelee International Conference Vol. 604 (1984).

  • 64.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).

    Book 

    Google Scholar 

  • 65.

    Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304. https://doi.org/10.1177/0049124104268644 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 66.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference; A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).

    MATH 

    Google Scholar 

  • 67.

    Ward‐Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish Biol. 80(5), 1844–1869 (2012).

  • 68.

    Graham, F et al. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers. Distrib. 22(5), 534–546 (2016).

  • 69.

    Morgan, A., Calich, H., Sulikowski, J. & Hammerschlag, N. Evaluating spatial management options for tiger shark (Galeocerdo cuvier) conservation in US Atlantic Waters. ICES J. Mar. Sci. 77(7–8), 3095–3109 (2020).

  • 70.

    Harvey, E. S. & Shortis, M. R. A system for stereo-video measurement of sub-tidal organisms. Mar. Technol. Soc. J. 29(4), 10–22 (1995).

  • 71.

    R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  • 72.

    McLean, D. L. et al. Distribution, abundance, diversity and habitat associations of fishes across a bioregion experiencing rapid coastal development. Estuar. Coast Shelf S. 178, 36–47 (2016).

  • 73.

    Althaus, F.et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: the CATAMI classification scheme. PloS one 10(10), e0141039 (2015).

  • 74.

    Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151(3), 1069–1076 (2007).

  • 75.

    Roff, G. et al. The ecological role of sharks on coral reefs. Trends Ecol. Evol. 31(5), 395–407 (2016).


  • Source: Ecology - nature.com

    Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection