in

Ecological network complexity scales with area

[adace-ad id="91168"]
  • 1.

    Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Google Scholar 

  • 2.

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • 3.

    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

  • 4.

    Smith, A. B., Sandel, B., Kraft, N. J. B. & Carey, S. Characterizing scale‐dependent community assembly using the functional‐diversity–area relationship. Ecology 94, 2392–2402 (2013).

    PubMed 

    Google Scholar 

  • 5.

    Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Dias, R. A. et al. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity–area relationships in habitat islands. J. Biogeogr. 47, 1638–1648 (2020).

    Google Scholar 

  • 7.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Simberloff, D. in Tropical Deforestation and Species Extinction (eds Whitmore, T. C. & Sayer, J. A.) 75–89 (Chapman & Hall, 1992).

  • 10.

    Jordano, P. Chasing ecological interactions. PLoS Biol. 14, e1002559 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Montoya, J. M., Woodward, G., Emmerson, M. C. & Solé, R. V. Press perturbations and indirect effects in real food webs. Ecology 90, 2426–2433 (2009).

    PubMed 

    Google Scholar 

  • 12.

    Lurgi, M., López, B. C., Montoya, J. M. & Lopez, B. C. Novel communities from climate change. Philos. Trans. R. Soc. Lond. B 367, 2913–2922 (2012).

    Google Scholar 

  • 13.

    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Montoya, J. M., Rodriguez, M. Á. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).

    Google Scholar 

  • 15.

    Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).

    PubMed 

    Google Scholar 

  • 16.

    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).

    PubMed 

    Google Scholar 

  • 17.

    Cohen, J. E. & Newman, C. M. Community area and food-chain length: theoretical predictions. Am. Nat. 138, 1542–1554 (1991).

    Google Scholar 

  • 18.

    Schoener, T. W. Food webs from the small to the large: the Robert H. MacArthur Award lecture. Ecology 70, 1559–1589 (1989).

    Google Scholar 

  • 19.

    Post, D. M., Pace, M. L. & Hairston, N. G. Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).

    PubMed 

    Google Scholar 

  • 22.

    Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Pimm, S. L. et al. Food web patterns and their consequences. Nature 350, 669–674 (1991).

    Google Scholar 

  • 24.

    Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).

    Google Scholar 

  • 25.

    Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–69 (2009).

    PubMed 

    Google Scholar 

  • 26.

    Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).

    Google Scholar 

  • 27.

    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    PubMed 

    Google Scholar 

  • 28.

    Preston, F. W. Time and space and the variation of species. Ecology 41, 611–627 (1960).

    Google Scholar 

  • 29.

    Turner, W. R. & Tjørve, E. Scale-dependence in species–area relationships. Ecography 6, 721–730 (2005).

    Google Scholar 

  • 30.

    Bengtsson, J. Confounding variables and independent observations in comparative analyses of food webs. Ecology 75, 1282–1288 (1994).

    Google Scholar 

  • 31.

    Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).

    PubMed 

    Google Scholar 

  • 32.

    Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Cohen, J. E. & Briand, Fredeiri Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. Species–area relationships across four trophic levels—decreasing island size truncates food chains. Ecography 37, 443–453 (2014).

    Google Scholar 

  • 36.

    Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).

    Google Scholar 

  • 37.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).

    PubMed 

    Google Scholar 

  • 41.

    Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Google Scholar 

  • 42.

    Janzen, D. H. The deflowering of central America. Nat. Hist. 83, 49–53 (1974).

  • 43.

    Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nat. Commun. 10, 5197 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Emer, C. et al. Seed dispersal networks in tropical forest fragments: area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).

    Google Scholar 

  • 45.

    McWilliams, C., Lurgi, M., Montoya, J. M., Sauve, A. & Montoya, D. The stability of multitrophic communities under habitat loss. Nat. Commun. 10, 2322 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Fig, T., Mccann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Google Scholar 

  • 48.

    Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).

    Google Scholar 

  • 49.

    Macfadyen, S., Gibson, R. H., Symondson, W. O. C. & Memmott, J. Landscape structure influences modularity patterns in farm food webs: consequences for pest control. Ecol. Appl. 21, 516–524 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Reverté, S. et al. Spatial variability in a plant–pollinator community across a continuous habitat: high heterogeneity in the face of apparent uniformity. Ecography 42, 1558–1568 (2019).

    Google Scholar 

  • 51.

    Torné‐Noguera, A., Arnan, X., Rodrigo, A. & Bosch, J. Spatial variability of hosts, parasitoids and their interactions across a homogeneous landscape. Ecol. Evol. 10, 3696–3705 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Hernández‐Castellano, C. et al. A new native plant in the neighborhood: effects on plant–pollinator networks, pollination, and plant reproductive success. Ecology 101, e03046 (2020).

    PubMed 

    Google Scholar 

  • 53.

    Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host–parasitoid interaction network along a forest–cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).

    PubMed 

    Google Scholar 

  • 54.

    Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).

    PubMed 

    Google Scholar 

  • 55.

    Vázquez, D. P. & Simberloff, D. Changes in interaction biodiversity induced by an introduced ungulate. Ecol. Lett. 6, 1077–1083 (2003).

    Google Scholar 

  • 56.

    Mulder, C., Den Hollander, H. A. & Hendriks, A. J. Aboveground herbivory shapes the biomass distribution and flux of soil invertebrates. PLoS ONE 3, e3573 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0631-2 (2018).

  • 59.

    Cagnolo, L., Salvo, A. & Valladares, G. Network topology: patterns and mechanisms in plant–herbivore and host–parasitoid food webs. J. Anim. Ecol. 80, 342–351 (2011).

    PubMed 

    Google Scholar 

  • 60.

    Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. TETRA‐EU 1.0: a species‐level trophic metaweb of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).

  • 61.

    Kopelke, J. et al. Food‐web structure of willow‐galling sawflies and their natural enemies across Europe. Ecology 98, 1730 (2017).

    PubMed 

    Google Scholar 

  • 62.

    Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

    CAS 

    Google Scholar 

  • 63.

    Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Guilhaumon, F., Mouillot, D. & Gimenez, O. mmSAR: an R-package for multimodel species–area relationship inference. Ecography 33, 420–424 (2010).

    Google Scholar 

  • 65.

    Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography https://doi.org/10.1111/ecog.04271 (2019).

  • 66.

    Galiana, N. Ecological network complexity scales with area. Dryad https://doi.org/10.5061/dryad.zcrjdfndg (2021).


  • Source: Ecology - nature.com

    Pricing carbon, valuing people

    Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage