in

Ecological niche divergence between extant and glacial land snail populations explained

[adace-ad id="91168"]
  • 1.

    Nehring, A. Über Tundren und Steppen der Jetzt- und Vorzeit, mit besonderer Berücksichtigung ihrer Fauna (F. Dummler, 1890).

  • 2.

    Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra in southern Siberia. Boreas 48, 36–56 (2019).

    Article 

    Google Scholar 

  • 3.

    Graham, R. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2, 343–350 (1976).

    Article 

    Google Scholar 

  • 4.

    Webb, T. I. I. I. The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio 69, 177–187 (1987).

    Article 

    Google Scholar 

  • 5.

    Frest, T. J. & Dickson, J. R. Land snails (Pleistocene-recent) of the Loess Hills: A preliminary survey. Proc. Iowa Acad. Sci. 93, 130–157 (1986).

    Google Scholar 

  • 6.

    Nekola, J. C. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80, 2459–2473 (1999).

    Article 

    Google Scholar 

  • 7.

    Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 17, 199–221 (2006).

    Article 

    Google Scholar 

  • 8.

    Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S. & Soltis, P. S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293 (2006).

    Article 

    Google Scholar 

  • 9.

    Graham, R. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Papers 11, 141–158 (2005).

    Article 

    Google Scholar 

  • 10.

    Davis, M. B. Climatic instability, time lags, and community disequilibrium. In Community Ecology (eds Diamond, J. & Case, T. J.) 269–284 (Harper & Row, 1984).

  • 11.

    Baker, R. G. et al. A full-glacial biota from southeastern Iowa USA. J. Quat. Sci. 1, 91–107 (1986).

    Article 

    Google Scholar 

  • 12.

    Baker, R. G., Sullivan, A. E., Hallberg, G. R. & Horton, D. G. Vegetational changes in western Illinois during the onset of late Wisconsinan glaciation. Ecology 70, 1363–1376 (1989).

    Article 

    Google Scholar 

  • 13.

    Baker, R. G. et al. Mid-Wisconsinan environments on the eastern Great Plains. Quat. Sci. Rev. 28, 873–889 (2009).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Scott, G. H. Uniformitarianism, the uniformity of nature, and paleoecology. N. Zeal. J. Geol. Geophys. 6, 510–527 (1963).

    Article 

    Google Scholar 

  • 15.

    Horsák, M. et al. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 76, 1–10 (2010).

    Article 

    Google Scholar 

  • 16.

    Ložek, V. Quartärmollusken der Tschechoslowakei (Nakladatelství Československé akademie věd, 1964).

  • 17.

    Horsák, M. et al. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas 44, 638–657 (2015).

    Article 

    Google Scholar 

  • 18.

    Moine, O. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quat. Int. 337, 90–113 (2014).

    Article 

    Google Scholar 

  • 19.

    Hošek, J. et al. Middle Pleniglacial pedogenesis on the northwestern edge of the Carpathian Basin: A multidisciplinary investigation of the Bíňa pedo-sedimentary section SW Slovakia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 321–339 (2017).

    Article 

    Google Scholar 

  • 20.

    Horsák, M., Škodová, J. & Cernohorsky, N. H. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. J. Molluscan Stud. 77, 248–254 (2011).

    Article 

    Google Scholar 

  • 21.

    Nekola, J. C., Coles, F. B. & Horsák, M. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): Integration of DNA-sequence data and conchology. J. Molluscan Stud. 81, 196–216 (2015).

    Article 

    Google Scholar 

  • 22.

    Horsák, M., Juřičková, L. & Picka, J. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics (Kabourek, 2013).

  • 23.

    Welter-Schultes, F. W. European non-marine molluscs, a guide for species identification (Planet Poster Editions, 2012).

  • 24.

    von Proschwitz, T. Three land-snail species new to the Norwegian fauna: Pupilla pratensis (Clessin, 1871), Vertigo ultimathule von Proschwitz, 2007 and Balea sarsii Philippi, 1847 [= B. heydeni von Maltzan, 1881]. Fauna Norv. 30, 13–19 (2010).

  • 25.

    Kerney, M. P., Cameron, R. A. D. & Jungbluth, J. H. Die Landschnecken Nord- und Mitteleuropas (Parey Verlag, 1983).

  • 26.

    Horsáková, V., Nekola, J. C. & Horsák, M. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Mol. Phylogenet. Evol. 132, 307–320 (2019).

    Article 

    Google Scholar 

  • 27.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • 28.

    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Article 

    Google Scholar 

  • 29.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article 

    Google Scholar 

  • 30.

    Haase, M., Meng, S. & Horsák, M. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae). Zool. J. Linnean. Soc. 191, 720–747 (2021).

    Article 

    Google Scholar 

  • 31.

    Ložek, V. Molluscan fauna from the loess series of Bohemia and Moravia. Quat. Int. 76–77, 141–156 (2001).

    Article 

    Google Scholar 

  • 32.

    Fordham, D. A. et al. PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).

    Article 

    Google Scholar 

  • 33.

    Mysterud, A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biol. 12, 129–141 (2006).

    Article 

    Google Scholar 

  • 34.

    Arnalds, Ó. The soils of Iceland. World Soils Book Series (Springer, 2015).

  • 35.

    Horsák, M. et al. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol. Process. 35, e14293 (2021).

  • 36.

    Ložek, V. Zrcadlo minulosti. Česká a slovenská krajina v kvartéru (Dokořán, 2007).

  • 37.

    Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds. Quaternary Glaciations—Extent and Chronology, Volume 15 (Elsevier, 2011).


  • Source: Ecology - nature.com

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection

    Resolving the structure of phage–bacteria interactions in the context of natural diversity