in

Evolutionary ecology of Miocene hominoid primates in Southeast Asia

[adace-ad id="91168"]
  • Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).

    Google Scholar 

  • Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).

    ADS 

    Google Scholar 

  • Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).

    Google Scholar 

  • Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).

    Google Scholar 

  • Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).

    PubMed 

    Google Scholar 

  • Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).

    Google Scholar 

  • Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).

    Google Scholar 

  • Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).

    Google Scholar 

  • Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).

    Google Scholar 

  • Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).

    Article 

    Google Scholar 

  • Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).

    Google Scholar 

  • Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).

    CAS 

    Google Scholar 

  • Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).

    Article 

    Google Scholar 

  • Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    ADS 

    Google Scholar 

  • Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).

    Article 

    Google Scholar 

  • Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).

    Article 

    Google Scholar 

  • Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).

    Article 

    Google Scholar 

  • Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).

    Article 

    Google Scholar 

  • Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).

    Google Scholar 

  • Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).

    Article 

    Google Scholar 

  • Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).

    Article 

    Google Scholar 

  • Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).

    ADS 
    Article 

    Google Scholar 

  • Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).

    ADS 
    Article 

    Google Scholar 

  • Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).

    ADS 
    Article 

    Google Scholar 

  • Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).

    Google Scholar 

  • Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).

    Google Scholar 

  • Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).

    Google Scholar 

  • Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).

    Google Scholar 

  • Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).

    Google Scholar 

  • Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).

    ADS 
    PubMed 

    Google Scholar 

  • Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).

    Article 

    Google Scholar 

  • Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).

    Article 

    Google Scholar 

  • Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).

    CAS 
    Article 

    Google Scholar 

  • Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).

    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).

    Google Scholar 

  • Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).

    Google Scholar 

  • Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).

    Google Scholar 

  • Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).

  • Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).

    MATH 

    Google Scholar 

  • Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).

    Google Scholar 

  • Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).

    CAS 
    Article 

    Google Scholar 

  • Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).

    Google Scholar 

  • Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).

    Google Scholar 

  • Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).

    Article 

    Google Scholar 

  • Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    ADS 

    Google Scholar 

  • Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).

    Google Scholar 

  • Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).

    Google Scholar 

  • Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).

    Article 

    Google Scholar 

  • Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).

    Google Scholar 

  • Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).

    ADS 

    Google Scholar 

  • Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).

    Google Scholar 

  • Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).

    Google Scholar 

  • Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).

    Google Scholar 

  • Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).

    Article 

    Google Scholar 

  • Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).

    Google Scholar 

  • Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).

    Google Scholar 

  • Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).

    Article 

    Google Scholar 

  • Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Pursuing progress at the nanoscale

    MIT engineers design surfaces that make water boil more efficiently