in

Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue

[adace-ad id="91168"]
  • Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, et al. Emerging marine diseases-climate links and anthropogenic factors. Science. 1999;285:1505–10. http://science.sciencemag.org/content/285/5433/1505.abstract.

    CAS 
    Article 

    Google Scholar 

  • Maynard J, Van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G, et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang. 2015;5:688–94.

    Article 

    Google Scholar 

  • Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, et al. Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci. 2014;6:249–77.

    Article 

    Google Scholar 

  • Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT, et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs. 2009;28:925–37.

    Article 

    Google Scholar 

  • Walton CJ, Hayes NK, Gilliam DS. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front Mar Sci. 2018;5:1–14.

    Article 

    Google Scholar 

  • Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 2020;21:1–20.

    Article 

    Google Scholar 

  • Burek KA, Gulland FMD, Sheffield G, Beckmen KB, Keyes E, Spraker TR, et al. Infectious disease and the decline of Steller sea lions (Eumetopias jubatus) in Alaska, USA: Insights from serologic data. J Wildl Dis. 2005;41:512–24.

    Article 

    Google Scholar 

  • Chaloupka M, Balazs GH, Work TM. Rise and Fall over 26 years of a marine epizootic in Hawaiian green sea turtles milani. J Wildl Dis. 2009;45:1138–42.

    Article 

    Google Scholar 

  • NOAA. Stony coral tissue loss disease case definition. 2018. Available online at: https://floridadep.gov/sites/default/file/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf (accessed September 15, 2020).

  • Estrada-Saldívar N, Molina-Hernández A, Pérez-Cervantes E, Medellín-Maldonado F, González-Barrios FJ, Alvarez-Filip L. Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs. 2020;39:861–6.

    Article 

    Google Scholar 

  • Heres MM, Farmer BH, Elmer F, Hertler H. Ecological consequences of stony coral tissue loss disease in the Turks and Caicos Islands. Coral Reefs. 2021;40:609–24. https://doi.org/10.1007/s00338-021-02071-4.

    Article 

    Google Scholar 

  • Combs IR, Studivan MS, Eckert RJ, Voss JD. Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PLoS ONE. 2021;16:1–17. https://doi.org/10.1371/journal.pone.0252593.

    CAS 
    Article 

    Google Scholar 

  • Estrada-Saldívar N, Quiroga-García BA, Pérez-Cervantes E, Rivera-Garibay OO, Alvarez-Filip L. Effects of the stony coral tissue loss disease outbreak on coral communities and the benthic composition of cozumel reefs. Front Mar Sci. 2021;8:1–13. https://doi.org/10.3389/fmars.2021.632777.

    Article 

    Google Scholar 

  • Brandt ME, Ennis RS, Meiling SS, Townsend J, Cobleigh K, Glahn A, et al. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. Front Mar Sci. 2021;1-15. https://doi.org/10.3389/fmars.2021.715329.

  • Florida Keys National Marine Sanctuary. Case definition: Stony Coral Tissue Loss Disease (SCTLD). Silver Spring, MD: National Oceanic and Atmospheric Administration; 2018.

  • Neely KL, Shea CP, Macaulay KA, Hower EK, Dobler MA. Short-and long-term effectiveness of coral disease treatments. Front Mar Sci. 2021;8:1–18. https://doi.org/10.3389/fmars.2021.675349.

    Article 

    Google Scholar 

  • Muller EM, Sartor C, Alcaraz NI, van Woesik R. Spatial epidemiology of the stonycoral-tissue-loss disease in Florida. Front Mar Sci. 2020;7:1–11. https://doi.org/10.3389/fmars.2020.00163.

    Article 

    Google Scholar 

  • Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. Coupled epidemiohydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar Sci. 2020;7:1–16. https://doi.org/10.3389/fmars.2020.591881.

    Article 

    Google Scholar 

  • Work TM, Weatherby TM, Landsberg JH, Kiryu Y, Cook SM, Peters EC. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar Sci. 2021;8:1–18. https://doi.org/10.3389/fmars.2021.750658.

    Article 

    Google Scholar 

  • Veglia, AJ, Beavers K, Van Buren EW, Meiling SS, Muller EM, Smith TB, et al. Novel alphaflexiviridae genomes associated with stony coral tissue loss disease (SCTLD)-affected, disease-exposed and unexposed coral colonies in the U.S. Virgin Islands. Microbiol Resour Announc. 11:e01199-21.

  • Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front Microbiol. 2020;681.

  • Becker CC, Brandt M, Miller CA, Apprill A. Microbial bioindicators of Stony Coral Tissue Loss Disease identified in corals and overlying waters using a rapid field‐based sequencing approach. Environ Microbiol. 2022;3:1166–82.

    Article 

    Google Scholar 

  • Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida reef tract. Front Microbiol. 2019;10:1–12. https://doi.org/10.3389/fmicb.2019.02244.

    CAS 
    Article 

    Google Scholar 

  • Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:1–18. https://doi.org/10.1128/mSystems.00143-16.

    Article 

    Google Scholar 

  • Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:1–13. https://doi.org/10.1038/s41467-018-07275-x.

    CAS 
    Article 

    Google Scholar 

  • Brown BE, Bythell JC. Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser. 2005;296:291–309. https://doi.org/10.3354/meps296291.

    CAS 
    Article 

    Google Scholar 

  • Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40. https://doi.org/10.1146/annurev-micro-102215-095440.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14. https://doi.org/10.3354/meps322001.

    CAS 
    Article 

    Google Scholar 

  • Ainsworth TD, Hoegh-Guldberg O. Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquat Biol. 2008;4:289–96. https://doi.org/10.3354/ab00102.

    Article 

    Google Scholar 

  • Work TM, Aeby GS. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar Ecol Prog Ser. 2014;500:1–9. https://doi.org/10.3354/meps10698.

    Article 

    Google Scholar 

  • Landsberg JH, Kiryu Y, Peters EC, Wilson PW, Perry N, Waters Y, et al. Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar Sci. 2020;7:1–24. https://doi.org/10.3389/fmars.2020.576013.

    Article 

    Google Scholar 

  • Lima LFO, Weissman M, Reed M, Papudeshi B, Alker AT, Morris MM, et al. Modeling of the coral microbiome: the influence of temperature and microbial network. MBio. 2020;11:e02691-19. https://doi.org/10.1128/mBio.02691-19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacKnight NJ, Cobleigh K, Lasseigne D, Chaves-Fonnegra A, Gutting A, Dimos B, et al. Microbial dysbiosis reflects disease resistance in diverse coral species. Commun Biol. 2021;4:1–11. https://doi.org/10.1038/s42003-021-02163-5.

    Article 

    Google Scholar 

  • Walker WA. Dysbiosis. The microbiota in gastrointestinal pathophysiology. Else-vier Inc. p. 227-32. https://doi.org/10.1016/B978-0-12-804024-9/00025-2.

  • McDevitt-Irwin JM, Baum JK, Garren M, Vega thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:1–16. https://doi.org/10.3389/fmars.2017.00262.

    Article 

    Google Scholar 

  • Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:1–12. https://doi.org/10.1038/ncomms11833.

    CAS 
    Article 

    Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:1–8. https://doi.org/10.1038/nmicrobiol.2017.121.

    CAS 
    Article 

    Google Scholar 

  • Sharp W, Maxwell K. Investigating the ongoing coral disease outbreak in the Florida keys: collecting corals to diagnose the etiological agent (s) and establishing sentinel sites to monitor transmission rates and the spatial progression of the disease. 2018.

  • Meiling SS, Muller EM, Lasseigne D, Rossin A, Veglia AJ, MacKnight N, et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front Mar Sci. 2021;8:1–12.

    Article 

    Google Scholar 

  • Williams L, Smith TB, Burge CA, Brandt ME. Species-specific susceptibility to white plague disease in three common Caribbean corals. Coral Reefs. 2020;39:27–31. https://doi.org/10.1007/s00338-019-01867-9.

    Article 

    Google Scholar 

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.

    CAS 
    Article 

    Google Scholar 

  • Apprill A, Mcnally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    CAS 
    Article 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA. Polyphasic taxonomy of the genus Talaromyces. Stud Mycol. 2014;78:175–341. https://doi.org/10.1016/j.simyco.2014.08.001.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huggett MJ, Apprill A. Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85. https://doi.org/10.1111/1758-2229.12686.

    Article 
    PubMed 

    Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71. https://doi.org/10.1093/nar/gkh293.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:1–12. https://doi.org/10.1371/journal.pcbi.1003531.

    CAS 
    Article 

    Google Scholar 

  • Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R,Legendre, P, McGlinn, D, et al. vegan: communityecology package. R package version 25-4. 2019.

  • Clarke, KR, Gorley, RN, Somerfield, PJ, Warwick, RM. Change in marine communities: an approach to statistical analysis and interpretation, 3nd edition. PRIMER-E: Plymouth. 2014.

  • Martin BD, Witten D, Willis AD Modeling microbial abundances and dysbiosis with beta-binomial regression. 2019;1–27. http://arxiv.org/abs/1902.02776.

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    Article 

    Google Scholar 

  • NOAA. Stony coral tissue loss disease case definition. 2018. p. 1–10.

  • Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.

    CAS 
    Article 

    Google Scholar 

  • Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92. https://doi.org/10.1038/ismej.2016.9.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardiner M, Bournazos AM, Maturana-Martinez C, Zhong L, Egan S. Exoproteome analysis of the seaweed pathogen Nautella italica R11 reveals temperature-dependent regulation of RTX-like proteins. Front Microbiol. 2017;8:1–9.

    Article 

    Google Scholar 

  • Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, et al. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS ONE. 2011;6:e27387. https://doi.org/10.1371/journal.pone.0027387.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De O, Santos E, Alves N, Dias GM, Mazotto AM, Vermelho A, et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 2011;5:1471–83.

    Article 

    Google Scholar 

  • Viehman S, Mills DK, Meichel GW, Richardson LL. Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. Dis Aquat Organ. 2006;69:119–27.

    CAS 
    Article 

    Google Scholar 

  • Brownell AC, Richardson LL. Sulfate reducing bacteria as secondary and necessary pathogens in black band disease of corals. Rev Biol Trop. 2014;62:1–9.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    “The world needs your smarts, your skills,” Ngozi Okonjo-Iweala tells MIT’s Class of 2022

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks