in

Fertilization treatments affect soil CO2 emission through regulating soil bacterial community composition in the semiarid Loess Plateau

[adace-ad id="91168"]
  • Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shakoor, A. et al. Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—A global meta-analysis. J. Clean Prod. 278, 124019. https://doi.org/10.1016/j.jclepro.2020.124019 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wu, L. et al. Soil organic matter priming and carbon balance after straw addition is regulated by long-term fertilization. Soil Biol. Biochem. 135, 383–391 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, F. et al. Effects of N addition and precipitation reduction on soil respiration and its components in a temperate forest. Agr. Forest. Meteorol. 271, 336–345 (2019).

    Article 

    Google Scholar 

  • Lei, J. et al. Temporal changes in global soil respiration since 1987. Nat. Commun. 12, 1–9 (2021).

    Google Scholar 

  • Wang, R. et al. Nitrogen application increases soil respiration but decreases temperature sensitivity: Combined effects of crop and soil properties in a semiarid agroecosystem. Geoderma 353, 320–330 (2019).

    Article 
    CAS 

    Google Scholar 

  • Du, K. et al. Influence of no-tillage and precipitation pulse on continuous soil respiration of summer maize affected by soil water in the North China Plain. Sci. Total Environ. 766, 144384. https://doi.org/10.1016/j.scitotenv.2020.144384 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. & Chen, H. Y. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Global Change Biol. 25, 1482–1492 (2019).

    Article 

    Google Scholar 

  • Lang, A. K., Jevon, F. V., Ayres, M. P. & Matthes, J. H. Higher soil respiration rate beneath arbuscular mycorrhizal trees in a northern hardwood forest is driven by associated soil properties. Ecosystems 23, 1243–1253 (2020).

    Article 
    CAS 

    Google Scholar 

  • Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, H. et al. The regulatory effects of biotic and abiotic factors on soil respiration under different land-use types. Ecol. Indic. 127, 107787. https://doi.org/10.1016/j.ecolind.2021.107787 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E. & van der Heijden, M. G. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 1–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, L.-F. et al. Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan Plateau. Appl. Soil Ecol. 161, 103882. https://doi.org/10.1016/j.apsoil.2021.103882 (2021).

    Article 

    Google Scholar 

  • Choudhary, M. et al. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agr. Ecosyst. Environ. 257, 38–46 (2018).

    Article 

    Google Scholar 

  • Zhang, M. et al. Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems. Field Crop. Res. 227, 102–109 (2018).

    Article 

    Google Scholar 

  • Bonanomi, G. et al. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 156, 103714. https://doi.org/10.1016/j.apsoil.2020.103714 (2020).

    Article 

    Google Scholar 

  • Gai, X. et al. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agr. Water Manage. 208, 384–392 (2018).

    Article 

    Google Scholar 

  • Lai, R. et al. Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system. Catena 151, 202–212 (2017).

    Article 
    CAS 

    Google Scholar 

  • Yan, T. et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: Evidence from a 7-year field study of larch plantations in northern China. Agr. Forest Meteorol. 262, 24–33 (2018).

    Article 

    Google Scholar 

  • Peng, Q. et al. Effects of nitrogen fertilization on soil respiration in temperate grassland in Inner Mongolia. China. Environ. Earth Sci. 62, 1163–1171 (2011).

    Article 
    CAS 

    Google Scholar 

  • Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).

    Article 
    CAS 

    Google Scholar 

  • Levine, U. Y., Teal, T. K., Robertson, G. P. & Schmidt, T. M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 5, 1683–1691 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Q., Liu, Z., Zhou, J., Xu, X. & Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total. Environ. 775, 145930. https://doi.org/10.1016/j.scitotenv.2021.145930 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. The impact of fertilizer amendments on soil autotrophic bacteria and carbon emissions in maize field on the semiarid Loess Plateau. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.664120 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subke, J. A., Inglima, I. & Francesca Cotrufo, M. Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Global Change Biol. 12, 921–943 (2006).

    Article 

    Google Scholar 

  • Yan, W., Zhong, Y., Liu, J. & Shangguan, Z. Response of soil respiration to nitrogen fertilization: Evidence from a 6-year field study of croplands. Geoderma 384, 114829. https://doi.org/10.1016/j.geoderma.2020.114829 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lamptey, S., Xie, J., Li, L., Coulter, J. A. & Jagadabhi, P. S. Influence of organic amendment on soil respiration and maize productivity in a semi-arid environment. Agronomy 9, 611. https://doi.org/10.3390/agronomy9100611 (2019).

    Article 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Nitrogen fertilization stimulated soil heterotrophic but not autotrophic respiration in cropland soils: A greater role of organic over inorganic fertilizer. Soil Biol. Biochem. 116, 253–264 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J., Zhang, X., Li, L., Zhang, P. & Pan, G. Effect of long-term fertilization on C mineralization and production of CH4 and CO2 under anaerobic incubation from bulk samples and particle size fractions of a typical paddy soil. Agr. Ecosyst. Environ. 120, 129–138 (2007).

    Article 
    CAS 

    Google Scholar 

  • Shen, J., Zhang, L., Guo, J., Ray, J. & He, J. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124 (2010).

    Article 

    Google Scholar 

  • Chen, Q., An, X., Zheng, B., Ma, Y. & Su, J. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize. Sci. Total. Environ. 645, 1230–1237 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W., Yu, C., Wang, X. & Hai, L. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting. Bioresource Technol. 297, 122410. https://doi.org/10.1016/j.biortech.2019.122410 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, X. et al. Microbial carbon use efficiency, biomass turnover, and necromass accumulation in paddy soil depending on fertilization. Agr. Ecosyst. Environ. 292, 106816. https://doi.org/10.1016/j.agee.2020.106816 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, J. et al. Nitrogen application increases soil microbial carbon fixation and maize productivity on the semiarid Loess Plateau. Plant Soil https://doi.org/10.1007/s11104-022-05457-7 (2022).

    Article 

    Google Scholar 

  • Li, J. et al. The more straw we deep-bury, the more soil TOC will be accumulated: When soil bacteria abundance keeps growing. J. Soil Sediment 22, 162–171 (2022).

    Article 

    Google Scholar 

  • Siczek, A., Frąc, M., Wielbo, J. & Kidaj, D. Benefits of flavonoids and straw mulch application on soil microbial activity in pea rhizosphere. Int. J. Environ. Sci. Te. 15, 755–764 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhao, S. et al. Change in straw decomposition rate and soil microbial community composition after straw addition in different long-term fertilization soils. Appl. Soil Ecol. 138, 123–133 (2019).

    Article 

    Google Scholar 

  • Zhang, S. et al. Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiol. 20, 1–11 (2020).

    Article 

    Google Scholar 

  • Jiang, Y. et al. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 95, 250–261 (2016).

    Article 
    CAS 

    Google Scholar 

  • Drenovsky, R., Vo, D., Graham, K. & Scow, K. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48, 424–430 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rath, K. M., Fierer, N., Murphy, D. V. & Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 13, 836–846 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, F. et al. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. CATENA 171, 622–631 (2018).

    Article 
    CAS 

    Google Scholar 

  • Goldfarb, K. C. et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2, 94. https://doi.org/10.3389/fmicb.2011.00094 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, J. et al. Response of soil microbial community to vegetation reconstruction modes in mining areas of the Loess Plateau, China. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.714967 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Fertilization shapes bacterial community structure by alteration of soil pH. Front. Microbiol. 8, 1325. https://doi.org/10.3389/fmicb.2017.01325 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol. Biochem. 153, 108062. https://doi.org/10.1016/j.soilbio.2020.108062 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lin, Y. et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).

    Article 
    CAS 

    Google Scholar 

  • Woyke, T. et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443, 950–955 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Molecular ecological network analyses. BMC Bioinf. 13, 1–20 (2012).

    Article 

    Google Scholar 

  • Liao, H. et al. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol. Appl. Soil Ecol. 154, 103640. https://doi.org/10.1016/j.apsoil.2020.103640 (2020).

    Article 

    Google Scholar 

  • Herren, C. M. & McMahon, K. D. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 20, 2207–2217 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, C., Jiao, S., Shu, D. & Wei, G. Inter-phylum negative interactions affect soil bacterial community dynamics and functions during soybean development under long-term nitrogen fertilization. Stress Biol. 1, 1–13 (2021).

    Article 
    CAS 

    Google Scholar 

  • Su, Y. G., Huang, G., Lin, Y. J. & Zhang, Y. M. No synergistic effects of water and nitrogen addition on soil microbial communities and soil respiration in a temperate desert. CATENA 142, 126–133 (2016).

    Article 
    CAS 

    Google Scholar 

  • Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. 155, 103671. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).

    Article 

    Google Scholar 

  • Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).

    Article 
    CAS 

    Google Scholar 

  • Chen, L.-F., He, Z.-B., Zhao, W.-Z., Kong, J.-Q. & Gao, Y. Empirical evidence for microbial regulation of soil respiration in alpine forests. Ecol. Indic. 126, 107710. https://doi.org/10.1016/j.ecolind.2021.107710 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, S. et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol. Biochem. 144, 107763. https://doi.org/10.1016/j.soilbio.2020.107763 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lynch, M. D. & Neufeld, J. D. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13, 217–229 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. et al. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 7, 1–18 (2019).

    Google Scholar 

  • Chiba, A. et al. Soil bacterial diversity is positively correlated with decomposition rates during early phases of maize litter decomposition. Microorganisms 9, 357 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S., Wang, S., Fan, M., Wu, Y. & Shangguan, Z. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community. Soil Till. Res. 196, 104437. https://doi.org/10.1016/j.still.2019.104437 (2020).

    Article 

    Google Scholar 

  • Bao, S. Soil agrochemical analysis 30 (China Agricultural Press, Beijing, Chinese, 2000).

    Google Scholar 

  • Zhai, L., Liu, H., Zhang, J., Huang, J. & Wang, B. Long-term application of organic manure and mineral fertilizer on N2O and CO2 emissions in a red soil from cultivated maize-wheat rotation in China. Agr. Sci. China 10, 1748–1757 (2011).

    Article 

    Google Scholar 

  • Xia, W. et al. Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–1236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pruesse, E. et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids. Res. 35, 7188–7196 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liaw, A. & Wiener, M. Classification and regression by randomForest. R news 2, 18–22 (2002).

    Google Scholar 

  • Archer, E. rfPermute: Estimate permutation p-values for random Forest importance metrics. R package version 2(1), 81 (2020).

    MathSciNet 

    Google Scholar 

  • Hooper, D., Coughlan, J. & Mullen, M. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008).

    Google Scholar 


  • Source: Ecology - nature.com

    Machinery of the state

    Extinction magnitude of animals in the near future