in

Global distribution and climate sensitivity of the tropical montane forest nitrogen cycle

[adace-ad id="91168"]
  • von Humboldt, A., and A. Bonpland. Essai sur la geographiedes plantes. Chez Levrault, Schoell et Campagnie, Libraries, Paris.(1805).

  • Malhi, Y. et al. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob. Change Biol. 16, 3171–3175 (2010).

    Article 

    Google Scholar 

  • Nottingham, A. T. et al. Climate warming and soil carbon in tropical forests: insights from an elevation gradient in the Peruvian Andes. BioScience 65, 906–921 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. N. Phytologist 214, 1019–1032 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nottingham, A. T. et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences 12, 6071–6083 (2015).

    Article 

    Google Scholar 

  • Nottingham, A. T. et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology 99, 2455–2466 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Jenny, H., Bingham, F. & Padillasaravia, B. Nitrogen and organic matter contents of equatorial soils of Colombia, South-America. Soil Sci. 66, 173–186 (1948).

    Article 
    CAS 

    Google Scholar 

  • Tanner, E., Vitousek, P. & Cuevas, E. Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79, 10–22 (1998).

    Article 

    Google Scholar 

  • Vitousek, P. M., Matson, P. A. & Turner, D. R. Elevational and age gradients in Hawaiian montane rainforest: foliar and soil nutrients. Oecologia 77, 565–570 (1988).

    Article 
    PubMed 

    Google Scholar 

  • Vitousek, P. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).

    Article 

    Google Scholar 

  • Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).

    Article 

    Google Scholar 

  • Duque, A. et al. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nat. Commun. 12, 2138 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Marrs, R. H., Proctor, J., Heaney, A. & Mountford, M. D. Changes in soil nitrogen-mineralization and nitrification along an altitudinal transect in tropical rain forest in Costa Rica. J. Ecol. 76, 466–482 (1988).

  • Grubb, P. J. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu. Rev. Ecol. Syst. 8, 83–107 (1977).

    Article 
    CAS 

    Google Scholar 

  • Wolf, K., Veldkamp, E., Homeier, J. & Martinson, G. O. Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob. Biogeochem. Cycles 25, GB4009 (2011).

  • Barthel, M. et al. Low N2O and variable CH4 fluxes from tropical forest soils of the Congo Basin. Nat. Commun. 13, 330 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brookshire, E. N. J., Hedin, L. O., Newbold, J. D., Sigman, D. M. & Jackson, J. K. Sustained losses of bioavailable nitrogen from montane tropical forests. Nat. Geosci. 5, 123–126 (2012).

    Article 
    CAS 

    Google Scholar 

  • Rütting, T. et al. Leaky nitrogen cycle in pristine African montane rainforest soil. Glob. Biogeochem. Cycles 29, 1754–1762 (2015).

    Article 

    Google Scholar 

  • Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 47, 151–163 (1996).

    Article 
    CAS 

    Google Scholar 

  • Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL 7, 217–240 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bauters, M. et al. Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences 14, 5313–5321 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dalling, J. W., Heineman, K., González, G. & Ostertag, R. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests. J. Tropical Ecol. 32, 368–383 (2016).

    Article 

    Google Scholar 

  • Porder, S., Vitousek, P., Chadwick, O., Chamberlain, C. & Hilley, G. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10, 158–170 (2007).

    Article 
    CAS 

    Google Scholar 

  • Houlton, B. Z., Morford, S. L. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 360, 58–62 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hilton, R. G., Galy, A., West, A. J., Hovius, N. & Roberts, G. G. Geomorphic control on the delta N-15 of mountain forests. Biogeosciences 10, 1693–1705 (2013).

    Article 
    CAS 

    Google Scholar 

  • Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Soil development and nitrogen turnover in montane rainforest soils on Hawai’i. Biotropica 268–274 (1983).

  • Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Houlton, B. & Bai, E. Imprint of denitrifying bacteria on the global terrestrial biosphere. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    Article 
    CAS 

    Google Scholar 

  • Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant and Soil 396, 1–26 (2015).

  • Högberg, P. Tansley Review No. 95. 15N Natural Abundance in Soil-Plant Systems. N. Phytologist 137, 179–203 (1997).

    Article 

    Google Scholar 

  • Martinelli, L. et al. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46, 45–65 (1999).

    Article 
    CAS 

    Google Scholar 

  • Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 17, (2003).

  • Craine, J. M. et al. Convergence of soil nitrogen isotopes across global climate gradients. Sci. Rep. 5, 8280 (2015).

  • Mooshammer, M. et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat. Commun. 5, 3694 (2014).

  • Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A. & Rillig, M. C. Nutrient limitation of soil microbial processes in tropical forests. Ecol. Monogr. 88, 4–21 (2018).

    Article 

    Google Scholar 

  • Mariotti, A., Pierre, D., Vedy, J. C., Bruckert, S. & Guillemot, J. The abundance of natural nitrogen 15 in the organic matter of soils along an altitudinal gradient (Chablais, Haute Savoie, France). Catena 7, 293–300 (1980).

    Article 
    CAS 

    Google Scholar 

  • Sena‐Souza, J. P., Houlton, B. Z., Martinelli, L. A. & Nardoto, G. B. Reconstructing continental-scale variation in soil δ15N: a machine learning approach in South America. Ecosphere 11, e03223 (2020).

    Article 

    Google Scholar 

  • Nottingham, A. T., Bååth E., Reischke, S., Salinas, N. & Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. change Biol. 25, 827–838 (2019).

  • Liu, Y. et al. A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob. Change Biol. 23, 455–464 (2017).

    Article 

    Google Scholar 

  • Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zimmermann, M. & Bird, M. I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 187–188, 8–15 (2012).

    Article 

    Google Scholar 

  • Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011).

    Article 

    Google Scholar 

  • Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).

    Article 

    Google Scholar 

  • Brookshire, E. N. J., Gerber, S., Menge, D. N. L. & Hedin, L. O. Large losses of inorganic nitrogen from tropical rainforests suggest a lack of nitrogen limitation. Ecol. Lett. 15, 9–16 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corrales, A., Henkel, T. W. & Smith, M. E. Ectomycorrhizal associations in the tropics—biogeography, diversity patterns and ecosystem roles. N. Phytologist 220, 1076–1091 (2018).

    Article 

    Google Scholar 

  • Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 1–7 https://doi.org/10.1038/s41561-020-00666-0 (2020).

  • Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).

    Article 

    Google Scholar 

  • Weintraub, S. R., Cole, R. J., Schmitt, C. G. & All, J. D. Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere 7, e01412 (2016).

    Article 

    Google Scholar 

  • Brookshire, E. N. J. & Thomas, S. A. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest. PLoS ONE 8, e70491 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kitayama, K. & Iwamoto, K. Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant Soil 229, 203–212 (2001).

    Article 
    CAS 

    Google Scholar 

  • Bauters, M. et al. Contrasting nitrogen fluxes in African tropical forests of the Congo Basin. Ecol. Monogr. 89, e01342 (2019).

    Article 

    Google Scholar 

  • Proctor, J., Edwards, I. D., Payton, R. W. & Nagy, L. Zonation of forest vegetation and soils of Mount Cameroon, West Africa. Plant Ecol. 192, 251–269 (2007).

    Article 

    Google Scholar 

  • Grubb, P. J. & Stevens, P. F. The Forests of the Fatima Basin and Mt Kerigomna, Papua New Guinea with a Review of Montane and Subalpine Rainforests in Papuasia (Department of Human Geography, Research School of Pacific Studies…, 2017).

  • Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67 (2013).

    Article 

    Google Scholar 

  • Kapos, V., Rhind, J., Edwards, M., Price, M. F. & Ravilious, C. in Forests in sustainable mountain development: a state of knowledge report for 2000. Task Force on Forests in Sustainable Mountain Development. 4–19 (CABI, 2000). https://doi.org/10.1079/9780851994468.0004.

  • Sexton, J. O. et al. Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int. J. Digital Earth 6, 427–448 (2013).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2022).

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48, https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).

  • Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 17, 1–27 (2006).

    Article 

    Google Scholar 

  • Baty, F. et al. A Toolbox for Nonlinear Regression in R: The Package nlstools. J. Stat. Softw. 66, 1–21 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance