in

Influence of organic ammonium derivatives on the equilibria between NH4+, NO2− and NO3− ions in the Nistru River water

[adace-ad id="91168"]
  • Britto, D. T., Siddiqi, M. Y., Glass, A. D. M. & Kronzucker, H. J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. PNAS 98(7), 4255–4258 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Britto, D. T. & Konzucker, H. J. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584 (2002).

    CAS 
    Article 

    Google Scholar 

  • Müller, T., Walter, B., Wirtz, A. & Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 52, 400–406 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mayes, M. A., Alexander, H. C., Hopkins, D. L. & Latvaitis, P. B. Acute and chronic toxicity of ammonia to freshwater fish: a site-specific study. Environ. Toxicol. Chem. 5, 437–442 (1986).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Archer, M. C. Hazards of nitrate, nitrite, and n-nitroso compounds in human nutrition. Nutr. Toxicol. 1, 329–381 (2012).

    Google Scholar 

  • Brione, E., Martin, G. & Morvan, J. Non-destructive technique for elimination of nutrients from pig manure, 33–37. In Horan, N. J., Lowe, P. & Stentiford, E. I. (ed.), Nutrient removal from wastewaters. Techonomic Publishing Co. (Lancaster 1994).

  • Butler, D., Friedler, E. & Gatt, K. Characterising the quantity and quality of domestic wastewater inflows. Wal. Sci. Tech. 31(7), 13–24 (1995).

    CAS 
    Article 

    Google Scholar 

  • Mahne, I., Prinčič, A. & Megušar, F. Nitrification/denitrification in nitrogen high-strength liquid wastes. Water Res. 30, 2107–2111 (1996).

    CAS 
    Article 

    Google Scholar 

  • Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas Europaea. Arch. Microbiol. 178, 250–255. https://doi.org/10.1007/s00203-002-0452-0 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dalton, H. Ammonia oxidation by the methane oxidizing bacterium Methylococcuscapsulatus strain bath. Arch. Microbiol. 114(3), 273–279 (1977).

    CAS 
    Article 

    Google Scholar 

  • Daum, M. et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier pseudomonas putida. Curr Microbiol 37, 281–288 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Do, H. et al. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation. J. Ind. Microbiol. Biotechnol. 35, 1331–1338. https://doi.org/10.1007/s10295-008-0415-9 (2008).

    MathSciNet 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lin, Y. et al. Physiological and molecular biological characteristics of heterotrophic ammonia oxidation by Bacillus sp. LY. World J. Microbiol. Biotechnol. 26, 1605–1612 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122(46), 11507–11508 (2000).

    CAS 
    Article 

    Google Scholar 

  • Zamora, R., León, M. M. & Hidalgo, F. J. Oxidative versus non-oxidative decarboxylation of amino acids: conditions for the preferential formation of either strecker aldehydes or amines in amino acid/lipid-derived reactive carbonyl model systems. J. Agric. Food Chem. 63(36), 8037–8043 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Perez, M. et al. The relationship among tyrosine decarboxylase and agmatine deiminase pathways in enterococcus faecalis. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02107/full (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B. Y., Lin, K. W., Wang, Y. M. & Yen, C. Y. Revealing interactive toxicity of aromatic amines to azo dye decolorizer Aeromonas hydrophila. J. Hazard Mater. 166(1), 187–194 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Greim, H., Bury, D., Klimisch, H. J., Oeben-Negele, M. & Ziegler-Skylakakis, K. Toxicity of aliphatic amines: structure-activity relationship. Chemosphere 36(2), 271–295. https://doi.org/10.1016/s0045-6535(97)00365-2 (1998).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Newsome, L. D., Johnson, D. E., Lipnick, R. L., Broderius, S. J. & Russom, C. L. A QSAR study of the toxicity of amines to the fathead minnow. Sci. Total Environ. 109–110, 537–551 (1991).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Pinheiro, H. M., Touraud, E. & Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm. 61, 121–139 (2004).

    CAS 
    Article 

    Google Scholar 

  • Poste, A. E., Grung, M. & Wright, R. F. Wright Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Sci. Total Environ. 481, 274–279 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ramos, E. U., Vaal, M. A. & Hermens, J. L. M. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharmacol. 11(3–4), 149–158 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nicholas, G. A., Peter, J. B., Milton, W. G. & Stan, V. G. Microbial decomposition of wood in streams: distribution of microflora and factors affecting [14C] lignocellulose mineralization. Appl. Environ. Microbiol. 46(6), 1409–1416 (1983).

    Article 

    Google Scholar 

  • Okabe, S., Kindaichi, T. & Ito, T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71(7), 3987–3994 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qiao, Z. et al. Microbial Heterotrophic Nitrification-Aerobic Denitrification Dominates Simultaneous Removal of Aniline and Ammonium in Aquatic Ecosystems. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04476-3 (2020).

    Article 

    Google Scholar 

  • Celik, A. Oxytetracycline and paracetamol biodegradation performance in the same enriched feed medium with aerobic nitrification/anaerobic denitrification SBR. Bioprocess Biosyst. Eng. 44, 1649–1658 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Spataru, P., Povar, I., Mosanu, E. & Trancalan, A. Study of stable nitrogen forms in natural surface waters in the presence of mineral substrates. Chem. J. Moldova 10, 26–32 (2015).

    CAS 
    Article 

    Google Scholar 

  • Spataru, P. et al. Influence of the interaction of calcium carbonate particles with surfactants on the degree of water pollution in small rivers. Ecol. Process. https://doi.org/10.1186/s13717-017-0086-4#article-dates-history (2017).

    Article 

    Google Scholar 

  • Spataru, P., Povar, I., Lupascu, T., Alder, A. C. & Mosanu, E. Study of nitrogen forms in seasonal dynamics and kinetics of nitrification and denitrification in Prut and Nistru river waters. Environ. Eng. Manag. J. 17(7), 1711–1719 (2018).

    CAS 
    Article 

    Google Scholar 

  • Cui, Z. G., Cui, Y. Z., Cui, C. F., Chen, Z. & Binks, B. P. Aqueous foams stabilized by in situ surface activation of CaCO3 Nanoparticles via Adsorption of Anionic Surfactant. Langmuir 26(15), 12567–12574 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cui, Z.-G., Cui, C.-F., Zhu, Y. & Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of Fatty acids. Langmuir 28(1), 314–320 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Tanaka, T. et al. Biodegradation of endocrine-disrupting chemical aniline by microorganisms. J. Health Sci. 55(4), 625–630 (2009).

    CAS 
    Article 

    Google Scholar 

  • Ahmed, S. et al. Isolation and characterization of a bacterial strain for aniline degradation. Afr. J. Biotechnol. 9(8), 1173–1179 (2010).

    CAS 
    Article 

    Google Scholar 

  • Spataru, P. Transformations of organic substances in surface waters of Republic of Moldova. PhD Dissertation, State University of Moldova (2011).

  • Sandu, M. et al. The dynamic of nitrification process in the presence of cationic surfactants. Proc. SIMI Bucharest 1, 277–281 (2007).

    Google Scholar 

  • Spataru, P., Fernandez, F., Povar, I. & Spataru, T. Behavior of nitrogen soluble forms in natural water in the presence of anionic and cationic surfactants and mineral substrates. Adv. Sci. Eng. 11(2), 70–77. https://doi.org/10.32732/ase.2019.11.2.70 (2019).

    Article 

    Google Scholar 

  • Reifferscheid, G., Buchinger, S., Cao, Z. & Claus, E. Identification of mutagens in freshwater sediments by the Ames-fluctuation assay using nitroreductase and acetyltransferase overproducing test strains. Environ. Mol. Mutagen. https://doi.org/10.1002/em.20638 (2011).

  • Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N. & Nabyvanets, Y. Characteristics of Surface Water Quality in Processes Determining Surface Water Chemistry, Springer Link, 1–9. https://doi.org/10.1007/978-3-319-42159-9_1 (2016).

  • Matveeva, N. P., Klimenko, O. A. & Trunov, N. M. Simulation of self-purification of natural treatment of organic pollutants in the laboratory, Gidrometeoizdat, Leningrad, 26–31 (in Russian) (1988).

  • ISO 7150-1:2001.Water quality – Determination of ammonium – Spectrometric method.

  • ISO 8466-1:1990. Water quality – Calibration and evaluation of analytical methods and estimation of performance characteristics, 1: Statistical evaluation of the linear calibration function.

  • SR ISO 7890-3:2000 Water quality – The determination of the content of nitrates, 3: The spectrometric method with sulfosalicylic acid.

  • SM SR EN 26777:2006 Water quality – determination of the content of nitrites. The method of the spectrometry of molecular absorption.

  • Sandu, M. et al. Method for nitrate determination in water in the presence of nitrite. Chem. J. Moldova 9, 8–13 (2014).

    CAS 
    Article 

    Google Scholar 

  • Bentzon-Tilia, M. et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME 9, 273–285 (2015).

    CAS 
    Article 

    Google Scholar 

  • Farnelid, H. et al. Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME J. 7, 1413–1423. https://doi.org/10.1038/ismej.2013.26 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagatani, H., Shimizu, M. & Valentine, R. C. The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Mikrobiol. 79, 164–175 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Allen, A. E., Booth, M. G., Verity, P. G. & Frischer, M. E. Influence of nitrate availability on the distribution and abundance of heterotrophic bacterial nitrate assimilation genes in the Barents Sea during summer. Aquat. Microb. Ecol. 39, 247–255 (2005).

    Article 

    Google Scholar 

  • Davidson, K. et al. The influence of the balance of inorganic and organic nitrogen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52(5), 2147–2163 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Domingues, R. B., Barbosa, A. B., Sommer, U. & Galvão, H. M. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat. Sci. 73, 331–343. https://doi.org/10.1007/s00027-011-0180-0 (2011).

    CAS 
    Article 

    Google Scholar 

  • Hollibaugh, J. T., Gifford, S., Sharma, S., Bano, N. & Moran, M. A. Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage. ISME J. 5, 866–878 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yang, J. et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ. Sci. Technol. 51, 3057–3064 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones, Z. L., Jasper, J. T., Sedlak, D. L. & Sharpa, J. O. Sulfide-Induced dissimilatory nitrate reduction to ammonium supports anaerobic Ammonium oxidation (anammox) in an open-water unit process wetland. Appl. Environ. Microbiol. 83(15), 1–14 (2017).

    Article 

    Google Scholar 

  • Nizzoli, D., Carraro, E., Nigro, V. & Viaroli, P. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res. 4, 2715–2724 (2010).

    Article 
    CAS 

    Google Scholar 

  • Rutting, T., Boeckx, P., Muller, C. & Klemedtsson, L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Roberts, K. L., Kessler, A. J., Grace, M. R. & Cook, P. L. M. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary. Cosmochim. Acta 133, 313–324 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Broman, E. et al. Active DNRA and denitrification in oxic hypereutrophic waters. Water Res. 194, 116954 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Han, X., Peng, S., Zhang, L., Lu, P. & Zhang, D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. Chemosphere 247, 125968 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rantanen, P.-L. et al. Decreased natural organic matter in water distribution decreases nitrite formation in non-disinfected conditions, via enhanced nitrite oxidation. Water Res. X 9, 100069 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Raimonet, M., Cazier, T., Rocher, V. & Laverman, A. M. Nitrifying kinetics and the persistence of nitrite in the Seine River, France. J. Environ. Qual. https://doi.org/10.2134/jeq2016.06.0242 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Philip, S., Laanbroek, H. J. & Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 1, 115–141. https://doi.org/10.1023/A:1020892826575 (2002).

    Article 

    Google Scholar 

  • Baneshi, M. M. et al. Aniline bio-adsorption from aqueous solutions using dried activated sludge: Aniline bio-adsorption from aqueous solutions using dried activated sludge. Poll. Res. 36(3), 403–409 (2017).

    CAS 

    Google Scholar 

  • Börnick, H., Eppinger, P., Grischek, T. & Worch, E. Simulation of biological degradation of aromatic amines in river bed sediments. Water Res. 35(3), 619–624 (2001).

    PubMed 
    Article 

    Google Scholar 

  • Norzaee, S., Djahed, B., Khaksefidi, R. & Mostafapour, F. K. Photocatalytic degradation of aniline in water using CuO nanoparticles. Water Supply 66(3), 178–185 (2017).

    Article 

    Google Scholar 

  • Paździor, K. et al. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75, 250–255 (2009).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Babcock, R. W., Chen, W., Ro, K. S., Mah, R. A. & Stenstrom, M. K. Enrichment and kinetics of biodegradation of 1-naphthylamine in activated sludge. Appl. Microbiol. Biotechnol. 39, 264–269 (1993).

    CAS 
    Article 

    Google Scholar 

  • Shin, K. A. & Spain, J. C. Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. Strain JS667. Appl. Microbiol. Biotechnol. 75(9), 2694–2704 (2009).

    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Climate change did not alter the effects of Bt maize on soil Collembola in northeast China

    Making hydropower plants more sustainable