in

Large-scale changes in marine and terrestrial environments drive the population dynamics of long-tailed ducks breeding in Siberia

[adace-ad id="91168"]
  • Berthold, P. Bird Migration: A General Survey. (Oxford University Press, 2001).

  • Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: Unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).

    Article 

    Google Scholar 

  • Saurola, P., Valkama, J. & Velmala, W. Suomen rengastusatlas Osa I/The Finnish Bird Ringing Atlas Vol. I. (Finnish Museum of Natural History and Ministry of Environment, 2013).

  • Bergman, G. Allin ja mustalinnun muuttokannat keväällä 1960 (in Finnish). Suomen Riista 14, 69–74 (1961).

    Google Scholar 

  • Skov, H. et al. Waterbird Populations and Pressures in the Baltic Sea. (TemaNord 550, 2011).

  • Grenquist, P. Öljytuhoista Suomen aluevesillä v. 1948–1955. Suomen Riista 10, 105–116 (1956).

  • Hario, M., Rintala, J. & Nordenswan, G. Dynamics of wintering long-tailed ducks in the Baltic Sea–the connection with lemming cycles, oil disasters, and hunting. Suomen Riista 55, 83–96 (2009).

    Google Scholar 

  • Ellermaa, M. & Pettay, T. Põõsaspean niemen arktinen muutto syksyllä 2004. Linnut Vuosik. 2005, 99–112 (2005).

    Google Scholar 

  • Delany, S. & Scott, D. Waterbird Population Estimates. (Wetlands International, 2006).

  • Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sokolov, V., Vardeh, S. & Quillfeldt, P. Long-tailed Duck (Clangula hyemalis) ecology: Insights from the Russian literature. Part 1: Asian part of the Russian breeding range. Polar Biol. 42, 2259–2276 (2019).

    Article 

    Google Scholar 

  • Summers, R. W. & Underhill, L. G. Factors related to breeding production of Brent Geese Branta b. bernicla and waders (Charadrii) on the Taimyr Peninsula. Bird Study 34(161), 171 (1987).

    Google Scholar 

  • Summers, R. W., Underhill, L. G. & Syroechkovski, J. The breeding productivity of dark-bellied brent geese and curlew sandpipers in relation to changes in the numbers of arctic foxes and lemmings on the Taimyr Peninsula Siberia. Ecography 21, 573–580 (1998).

    Article 

    Google Scholar 

  • Underhill, L. G. et al. Breeding of waders (Charadrii) and Brent Geese Branta bernicla bernicla at Pronchishcheva Lake, northeastern Taimyr, Russia, in a peak and a decreasing lemming year. Ibis 135, 277–292 (1993).

    Article 

    Google Scholar 

  • Gauthier, G., Bëty, J., Giroux, J.-F. & Rochefort, L. Trophic interactions in a High Arctic snow goose colony. Integr. Comp. Biol. 44, 119–129 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Elton, C. Voles, Mice and Lemmings: Problems in Population Dynamics. (Clarendon Press, 1942).

  • Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kokorev, Y. I. & Kuksov, V. A. Population dynamics of lemmings, Lemmus sibirica and Dicrostonyx torquatus, and Arctic Fox Alopex lagopus on the Taimyr peninsula, Siberia, 1960–2001. Ornis Svecica 12, 139–145 (2002).

    Google Scholar 

  • Angerbjörn, A., Tannerfeldt, M. & Erlinge, S. Predator-prey relationships: Arctic foxes and lemmings. J. Anim. Ecol. 68, 34–49 (1999).

    Article 

    Google Scholar 

  • Fauteux, D., Gauthier, G. & Berteaux, D. Seasonal demography of a cyclic lemming population in the Canadian Arctic. J. Anim. Ecol. 84, 1412–1422 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Gilg, O., Sittler, B. & Hanski, I. Climate change and cyclic predator–prey population dynamics in the high Arctic. Glob. Chang. Biol. 15, 2634–2652 (2009).

    ADS 
    Article 

    Google Scholar 

  • Berryman, A. A. The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992).

    Article 

    Google Scholar 

  • Framstad, E., Stenseth, N. C., Bjørnstad, O. N. & Falck, W. Limit cycles in Norwegian lemmings: Tensions between phase-dependence and density-dependence. Proc. R Soc. London. Ser. B Biol. Sci. 264, 31–38 (1997).

    ADS 
    Article 

    Google Scholar 

  • Hanski, I. & Korpimaki, E. Microtine rodent dynamics in northern Europe: Parameterized models for the predator-prey interaction. Ecology 76, 840–850 (1995).

    Article 

    Google Scholar 

  • May, R. M. Limit cycles in predator-prey communities. Science 177, 900–902 (1972).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gilg, O., Hanski, I. & Sittler, B. Cyclic dynamics in a simple vertebrate predator-prey community. Science 302, 866–868 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Juhasz, C. C., Shipley, B., Gauthier, G., Berteaux, D. & Lecomte, N. Direct and indirect effects of regional and local climatic factors on trophic interactions in the Arctic tundra. J. Anim. Ecol. 89, 704–715 (2020).

    PubMed 
    Article 

    Google Scholar 

  • McKinnon, L., Berteaux, D., Gauthier, G. & Bêty, J. Predator-mediated interactions between preferred, alternative and incidental prey in the arctic tundra. Oikos 122, 1042–1048 (2013).

    Article 

    Google Scholar 

  • Angelstam, P., Lindström, E. & Widén, P. Role of predation in short-term population fluctuations of some birds and mammals in Fennoscandia. Oecologia 62, 199–208 (1984).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ehrich, D. et al. Vole abundance and reindeer carcasses determine breeding activity of Arctic foxes in low Arctic Yamal Russia. BMC Ecol. 17, 1–13 (2017).

    Article 

    Google Scholar 

  • Brook, R. W., Duncan, D. C., Hines, J. E., Carrière, S. & Clark, R. G. Effects of small mammal cycles on productivity of boreal ducks. Wildlife Biol. 11, 3–11 (2005).

    Article 

    Google Scholar 

  • Guillemain, M. et al. Effects of climate change on European ducks: what do we know and what do we need to know?. Wildlife Biol. 19, 404–419 (2013).

    Article 

    Google Scholar 

  • Pehrsson, O. Duckling production of the Oldsquaw in relation to spring weather and small-rodent fluctuations. Can. J. Zool. 64, 1835–1841 (1986).

    Article 

    Google Scholar 

  • ACIA. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. (Cambridge University Press, 2004).

  • Høye, T. T., Post, E., Meltofte, H., Schmidt, N. M. & Forchhammer, M. C. Rapid advancement of spring in the High Arctic. Curr. Biol. 17, R449–R451 (2007).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 3, 65–90 (2017).

    Article 

    Google Scholar 

  • Bilodeau, F., Gauthier, G. & Berteaux, D. The effect of snow cover on lemming population cycles in the Canadian High Arctic. Oecologia 172, 1007–1016 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Madsen, F. J. On the food habits of the diving ducks in Denmark. Danish Rev. Game Biol. 3, 2–83 (1954).

    Google Scholar 

  • Nilsson, L. Habitat selection, food choice, and feeding habits of diving ducks in coastal waters of South Sweden during the non-breeding season. Ornis Scand. 3, 55–78 (1972).

    Article 

    Google Scholar 

  • Žydelis, R. & Ruškytė, D. Winter foraging of long-tailed ducks (Clangula hyemalis) exploiting different benthic communities in the Baltic Sea. Wilson Bull. 117, 133–141 (2005).

    Article 

    Google Scholar 

  • Skabeikis, A. et al. Effect of round goby (Neogobius melanostomus) invasion on blue mussel (Mytilus edulis trossulus) population and winter diet of the long-tailed duck (Clangula hyemalis). Biol. Invasions 21, 911–923 (2019).

    Article 

    Google Scholar 

  • Laursen, K. & Møller, A. P. Long-Term changes in nutrients and mussel stocks are related to numbers of breeding eiders Somateria mollissima at a large Baltic colony. PLoS ONE 9, e95851 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the baltic sea during the last century. Proc. Natl. Acad. Sci. USA 111, 5628–5633 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Savchuk, O. P. Large-scale nutrient dynamics in the Baltic Sea, 1970–2016. Front. Mar. Sci. 5, 95 (2018).

    Article 

    Google Scholar 

  • Møller, A. P., Flensted-Jensen, E. & Mardal, W. Agriculture, fertilizers and life history of a coastal seabird. J. Anim. Ecol. 76, 515–525 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Møller, A. P., Thorup, O. & Laursen, K. Predation and nutrients drive population declines in breeding waders. Ecol. Appl. 28, 1292–1301 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis. (Chapman & Hall/CRC, 2004).

  • Lebreton, J.-D. & Gimenez, O. Detecting and estimating density dependence in wildlife populations. J. Wildl. Manage. 77, 12–23 (2013).

    Article 

    Google Scholar 

  • Bergman, G. The spring migration of the Long-tailed Duck and the Common Scoter in western Finland. Ornis Fenn. 51, 129–145 (1974).

    Google Scholar 

  • Richardson, W. J. Timing and amount of bird migration in relation to weather: A Review. Oikos 30, 224–272 (1978).

    Article 

    Google Scholar 

  • Alerstam, T. Bird flight and optimal migration. Trends Ecol. Evol. 6, 210–215 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Richardson, W. J. Wind and Orientation of Migrating Birds: A Review. in Orientation in Birds (ed. Berthold, P.) 226–249 (Birkhäuser, 1991). https://doi.org/10.1007/978-3-0348-7208-9_11.

  • Christensen, T. K. & Fox, A. D. Changes in age and sex ratios amongst samples of hunter-shot wings from common duck species in Denmark 1982–2010. Eur. J. Wildl. Res. 60, 303–312 (2014).

    Article 

    Google Scholar 

  • Fox, A. D., Clausen, K. K., Dalby, L., Christensen, T. K. & Sunde, P. Age-ratio bias among hunter-based surveys of Eurasian Wigeon Anas penelope based on wing vs. field samples. Ibis 157, 391–395 (2015).

    Article 

    Google Scholar 

  • Møller, A. P., Flensted-Jensen, E., Laursen, K. & Mardal, W. Fertilizer leakage to the marine environment, ecosystem effects and population trends of waterbirds in Denmark. Ecosystems 18, 30–44 (2015).

    Article 
    CAS 

    Google Scholar 

  • Scott, D. A. & Rose, P. M. Atlas of Anatidae Populations in Africa and Western Eurasia. Wetlands International Publication 41 (Wetlands International, 1996).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article 

    Google Scholar 

  • Hijmans, R. J. Introduction to the ’raster’ package (version 3.0–12). https://rspatial.org/raster/pkg/index.html (2020).

  • National Center for Atmospheric Research Staff. The climate data guide: Hurrell North Atlantic Oscillation (NAO) index (PC-based). https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-pc-based (2019).

  • Hurrell, J. W. Decadal trends in the north atlantic oscillation: Regional temperatures and precipitation. Science 269, 676–679 (1995).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Büttger, H., Nehls, G. & Stoddard, P. The history of intertidal blue mussel beds in the North Frisian Wadden Sea in the 20th century: Can we define reference conditions for conservation targets by analysing aerial photographs?. J. Sea Res. 87, 91–102 (2014).

    ADS 
    Article 

    Google Scholar 

  • Kristensen, P. S. & Borgstrøm, R. The Danish Wadden Sea: Fishery of mussels (Mytilus edulis L.) in a wildlife reserve? in Proceedings from the 11. Scientific Wadden Sea Symposium, Esbjerg, Denmark, 4.-8. April 2005. NERI technical report (ed. Laursen, K.) vol. 573 107–111 (National Environmental Research Institute. Department of Wildlife Ecology and Biodiversity, 2006).

  • Baird, R. H. Measurement of condition in mussels and oysters. ICES J. Mar. Sci. 23, 249–257 (1958).

    Article 

    Google Scholar 

  • Waldeck, P. & Larsson, K. Effects of winter water temperature on mass loss in Baltic blue mussels: Implications for foraging sea ducks. J. Exp. Mar. Bio. Ecol. 444, 24–30 (2013).

    Article 

    Google Scholar 

  • Nehls, G. et al. Beds of blue mussels and Pacific oysters. Quality Status Report, Thematic Report; No. 11. Wadden Sea Ecosystem; No. 25 (2009).

  • Laursen, K., Møller, A. P., Haugaard, L., Öst, M. & Vainio, J. Allocation of body reserves during winter in eider Somateria mollissima as preparation for spring migration and reproduction. J. Sea Res. 144, 49–56 (2019).

    ADS 
    Article 

    Google Scholar 

  • Morelli, F., Laursen, K., Svitok, M., Benedetti, Y. & Møller, A. P. Eiders, nutrients and eagles: Bottom-up and top-down population dynamics in a marine bird. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13498 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Westerbom, M., Kilpi, M. & Mustonen, O. Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the north-eastern Baltic Sea. Mar. Biol. 140, 991–999 (2002).

    Article 

    Google Scholar 

  • Kery, M. & Schaub, M. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective. (Elsevier, 2012).

  • Kerman, J. Neutral noninformative and informative conjugate beta and gamma prior distributions. Electron. J. Stat. 5, 1450–1470 (2011).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Crainiceanu, C. M., Ruppert, D. & Wand, M. P. Bayesian analysis for penalized spline regression using WinBUGS. J. Stat. Softw. 14, (2005).

  • Saha, K. & Paul, S. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Biometrics 61, 179–185 (2005).

    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Mutshinda, C. M., O’Hara, R. B. & Woiwod, I. P. A multispecies perspective on ecological impacts of climatic forcing. J. Anim. Ecol. 80, 101–107 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Pöysä, H. et al. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?. Ecol. Evol. 6, 7004–7014 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Almaraz, P., Green, A. J., Aguilera, E., Rendón, M. A. & Bustamante, J. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl. J. Anim. Ecol. https://doi.org/10.1111/j.1365-2656.2012.01972.x (2012).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt, N. M. et al. Response of an arctic predator guild to collapsing lemming cycles. Proc. R. Soc. B Biol. Sci. 279, 4417–4422 (2012).

    Article 

    Google Scholar 

  • Ebbinge, B. S., Heesterbeek, H. J. A. P., Ens, B. J. & Goedhart, P. W. Density dependent population limitation in dark-bellied brent geese Branta b. bernicla. Avian Sci. 2, 63–75 (2002).

    Google Scholar 

  • Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).

    Article 

    Google Scholar 

  • Ims, R. A., Henden, J.-A. & Killengreen, S. T. Collapsing population cycles. Trends Ecol. Evol. 23, 79–86 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Korslund, L. & Steen, H. Small rodent winter survival: Snow conditions limit access to food resources. J. Anim. Ecol. 75, 156–166 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Callaghan, T. V. et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio 40, 17–31 (2011).

    Article 

    Google Scholar 

  • Machín, P. et al. The role of ecological and environmental conditions on the nesting success of waders in sub-Arctic Sweden. Polar Biol. 42, 1571–1579 (2019).

    Article 

    Google Scholar 

  • Koneff, M. D. et al. Evaluation of harvest and information needs for North American sea ducks. PLoS ONE 12, e0175411 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Heppell, S. S., Caswell, H. & Crowder, L. B. Life histories and elasticity patterns: Perturbation analysis for species with minimal demographic data. Ecology 81, 654–665 (2000).

    Article 

    Google Scholar 

  • Sæther, B.-E. & Bakke, O. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Article 

    Google Scholar 

  • Öst, M., Ramula, S., Lindén, A., Karell, P. & Kilpi, M. Small-scale spatial and temporal variation in the demographic processes underlying the large-scale decline of eiders in the Baltic Sea. Popul. Ecol. 58, 121–133 (2016).

    Article 

    Google Scholar 

  • Holopainen, S. & Fox, A. D. Associations between duck harvest, hunting wing ratios and measures of reproductive output in Northern Europe. Eur. J. Wildl. Res. 64, (2018).

  • Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 36, 5315–5320 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carstensen, J. et al. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43, 26–36 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Conley, D. J. et al. Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412–3420 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Conley, D. J. et al. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17, 165–184 (2007).

    Article 

    Google Scholar 

  • Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fox, A. D. et al. Current and potential threats to Nordic duck populations–a horizon scanning exercise. Ann. Zool. Fennici 52, 193–220 (2015).

    Article 

    Google Scholar 

  • Møller, A. P. Biological consequences of global change for birds. Integr. Zool. 8, 136–144 (2013).

    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Fusion’s newest ambassador