in

Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes

[adace-ad id="91168"]
  • Canadell JG, Monteiro PMS, Costa, MH, Cotrim da Cunha L, Cox PM, Eliseev AV, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021, in press.

  • Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci. 2021;14:225–30.

    CAS 

    Google Scholar 

  • Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000 – 2017. Earth Syst. Sci Data. 2020;12:1561–623.

    Google Scholar 

  • Lamentowicz M, Gałka M, Pawlyta J, Lamentowicz Ł, Goslar T, Miotk-Szpiganowicz G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Stud Quat. 2011;28:3–16.

    Google Scholar 

  • Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.

    Google Scholar 

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils – a review. Geochemistry. 2016;76:327–52.

    CAS 

    Google Scholar 

  • Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev. 2000;24:625–45.

    CAS 
    PubMed 

    Google Scholar 

  • Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.

    CAS 
    PubMed 

    Google Scholar 

  • Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–R732.

    CAS 
    PubMed 

    Google Scholar 

  • Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 2021;15:3549–65.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–6.

    CAS 
    PubMed 

    Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.

    PubMed 

    Google Scholar 

  • Narrowe AB, Borton MA, Hoyt DW, Smith GJ, Daly RA, Angle JC, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. mSystems. 2019;4:e00320–19.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zalman CA, Meade N, Chanton J, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem. 2018;118:156–60.

    CAS 

    Google Scholar 

  • Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50.

    Google Scholar 

  • Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol. 2011;77:28–39.

    CAS 
    PubMed 

    Google Scholar 

  • Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep. 2016;8:941–55.

    CAS 
    PubMed 

    Google Scholar 

  • Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: An ‘active’ microbial process. Microbiol Open. 2015;4:1–11.

    Google Scholar 

  • Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 2011;17:2629–39.

    Google Scholar 

  • Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, et al. Microbial minorities modulate methane consumption through niche partitioning. ISME J. 2013;7:2214–28.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karbin S, Hagedorn F, Dawes MA, Niklaus PA. Treeline soil warming does not affect soil methane fluxes and the spatial micro-distribution of methanotrophic bacteria. Soil Biol Biochem. 2015;86:164–71.

    CAS 

    Google Scholar 

  • Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem. 2011;43:1034–41.

    CAS 

    Google Scholar 

  • Menyailo OV, Hungate BA, Abraham WR, Conrad R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Chang Biol. 2008;14:2405–19.

    Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. editors. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2013, 465–570.

  • Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol. 2021;27:929–40.

    PubMed 

    Google Scholar 

  • Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep. 2009;1:336–46.

    CAS 
    PubMed 

    Google Scholar 

  • Kolb S, Horn MA. Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol. 2012;3:78.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 2016;7:11728.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys. 2018;56:207–50.

    Google Scholar 

  • Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.

    CAS 
    PubMed 

    Google Scholar 

  • Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol. 2011;78:31–49.

    CAS 
    PubMed 

    Google Scholar 

  • Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.

    PubMed 

    Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.

    CAS 
    PubMed 

    Google Scholar 

  • Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, et al. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol. 2016;41:14–18.

    CAS 
    PubMed 

    Google Scholar 

  • Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–815.

    CAS 
    PubMed 

    Google Scholar 

  • Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J. 2018;12:3043–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng J, Wegner CE, Liesack W. Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol. 2017;8:400.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome. 2018;6:169.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdallah RZ, Wegner CE, Liesack W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem. 2019;132:131–42.

    CAS 

    Google Scholar 

  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–43.

    CAS 
    PubMed 

    Google Scholar 

  • Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.

    PubMed 

    Google Scholar 

  • Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:e00038–18.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–85.

    Google Scholar 

  • IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resour Reports No 106. Rome: FAO; 2015.

  • Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.

    CAS 

    Google Scholar 

  • Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibaration of the kEN value. Soil Biol Biochem. 1996;28:33–37.

    CAS 

    Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.

    CAS 

    Google Scholar 

  • Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils. 2014;50:1189–1200.

    CAS 

    Google Scholar 

  • Koch O, Tscherko D, Kandeler E. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res. 2007;39:438–48.

    Google Scholar 

  • Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol. 2014;80:5761–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.

    CAS 
    PubMed 

    Google Scholar 

  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS 
    PubMed 

    Google Scholar 

  • Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, et al. CREST – Classification resources for environmental sequence tags. PLoS One. 2012;7:e49334.

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 
    PubMed 

    Google Scholar 

  • Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.

    PubMed 

    Google Scholar 

  • Dumont MG, Lüke C, Deng Y, Frenzel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol. 2014;5:34.

    PubMed Central 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

  • Oksanen J, Blanchet f. G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2020. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.

  • Graves S, Piepho H-P, Selzer L. multcompView: Visualizations of paired comparisons. 2019. R package version 0.1-8. https://CRAN.R-project.org/package=multcompView.

  • Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644.

    PubMed 
    PubMed Central 

    Google Scholar 

  • IPCC Task Force on National Greenhouse Gas Inventories. Methodological guidance on lands with wet and drained soilds, and constructed wetlands for wastewater treatment. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2014.

  • Tiemeyer B, Albiac Borraz E, Augustin J, Bechtold M, Beetz S, Beyer C, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob Chang Biol. 2016;22:4134–49.

    PubMed 

    Google Scholar 

  • Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.

    CAS 

    Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming. Nature 2005;433:298–301.

    CAS 
    PubMed 

    Google Scholar 

  • Dutaur L, Verchot LV. A global inventory of the soil CH4 sink. Glob Biogeochem Cycles. 2007;21:GB4013.

    Google Scholar 

  • McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems. 2019;22:1424–43.

    CAS 

    Google Scholar 

  • Gulledge J, Schimel JP. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol Biochem. 1998;30:1127–32.

    CAS 

    Google Scholar 

  • Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA. 2015;112:E2507–E2516.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conrad R. Methane production in soil environments – anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.

    CAS 
    PubMed Central 

    Google Scholar 

  • Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 2018;12:411–23.

    PubMed 

    Google Scholar 

  • Smith KS, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15:150–5.

    CAS 
    PubMed 

    Google Scholar 

  • Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014, pp 123–63.

  • Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.

    Google Scholar 

  • Söllinger A, Urich T. Methylotrophic methanogens everywhere – physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.

    PubMed 

    Google Scholar 

  • Yang S, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem. 2017;111:66–77.

    CAS 

    Google Scholar 

  • Weil M, Wang H, Bengtsson M, Köhn D, Günther A, Jurasinski G, et al. Long-term rewetting of three formerly drained peatlands drives congruent compositional changes in pro- and eukaryotic soil microbiomes through environmental filtering. Microorganisms. 2020;8:550.

    CAS 
    PubMed Central 

    Google Scholar 

  • Söllinger A, Seneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, et al. Down-regulation of the microbial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Sci Adv. 2022;8:eabm3230.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, et al. Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol. 2012;14:1024–34.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci. 2008;105:10203–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yimga MT, Dunfield PF, Ricke P, Heyer J, Liesack W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol. 2003;69:5593–602.

    CAS 

    Google Scholar 

  • Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freitag TE, Toet S, Ineson P, Prosser JI. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol. 2010;73:157–65.

    CAS 
    PubMed 

    Google Scholar 

  • Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol Fertil Soils. 2018;54:885–95.

    Google Scholar 


  • Source: Ecology - nature.com

    Ocean vital signs

    Privately protected areas increase global protected area coverage and connectivity