in

Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs

[adace-ad id="91168"]
  • Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bradley, B. A. et al. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 10, 20–28 (2012).

    Article 

    Google Scholar 

  • Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, Berlin, 2007).

    Chapter 

    Google Scholar 

  • Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).

    Article 

    Google Scholar 

  • Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: Ecological drivers of biogeographic patterns. New Phytol. 196, 383–396 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Moravcová, L., Pyšek, P., Jarošík, V. & Pergl, J. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10, e0123634 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Thompson, K., Bakker, J. P. & Bekker, R. M. Soil Seed Banks of NW Europe: Methodology, Density and Longevity (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  • Walck, J. L., Baskin, J. M., Baskin, C. C. & Hidayati, S. N. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15, 189–196 (2005).

    Article 

    Google Scholar 

  • Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).

    Article 

    Google Scholar 

  • Gioria, M. et al. Persistent soil seed banks promote naturalization and invasiveness in flowering plants. Ecol. Lett. 24, 1655–1667 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).

    Google Scholar 

  • Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Venable, D. L. & Brown, J. S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131, 360–384 (1988).

    Article 

    Google Scholar 

  • Adams, V. M., Marsh, D. M. & Knox, J. S. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol. Conserv. 124, 425–436 (2005).

    Article 

    Google Scholar 

  • Harper, J. The Population Biology of Plants (Academic Press, London, 1977).

    Google Scholar 

  • Warr, S. J., Thompson, K. & Kent, M. Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progr. Phys. Geogr. 17, 329–347 (1993).

    Article 

    Google Scholar 

  • Thompson, K., Bakker, J. P., Bekker, R. M. & Hodgson, J. Ecological correlates of seed persistence in soil in the north-west European flora. J. Ecol. 86, 163–169 (1998).

    Article 

    Google Scholar 

  • Gioria, M., Pyšek, P., Baskin, C. & Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 108, 2121–2131 (2020).

    Article 

    Google Scholar 

  • Pyšek, P. et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).

    Article 

    Google Scholar 

  • Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29, 360–369 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).

    MathSciNet 
    Article 

    Google Scholar 

  • Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2017).

    Article 

    Google Scholar 

  • Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11, 4–16 (2018).

    Google Scholar 

  • Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 1–21 (2014).

    Article 

    Google Scholar 

  • D’Antonio, C. M., Dudley, T. L. & Mack, M. C. Disturbance and biological invasions: Direct effects and feedbacks. In Ecosystems of Disturbed Ground (ed. Walker, L.) 413–452 (Elsevier, Oxford, 1999).

    Google Scholar 

  • Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88, 528–534 (2000).

    Article 

    Google Scholar 

  • Hierro, J. L., Villarreal, D., Eren, Ö., Graham, J. M. & Callaway, R. M. Disturbance facilitates invasion: The effects are stronger abroad than at home. Am. Nat. 168, 144–156 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Chytrý, M. et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).

    Article 

    Google Scholar 

  • Templeton, A. & Levin, D. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).

    Article 

    Google Scholar 

  • Honnay, O., Bossuyt, B., Jacquemyn, H., Shimono, A. & Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population?. Oikos 117, 1–5 (2008).

    Article 

    Google Scholar 

  • Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, post-germination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).

    Article 

    Google Scholar 

  • Gioria, M., Osborne, B. & Pyšek, P. Soil seed banks under a warming climate. In Plant Regeneration from Seeds: A global Warming Perspective (eds Baskin, C. & Baskin, J.) 285–298 (Academic Press, London, 2022).

    Chapter 

    Google Scholar 

  • Blossey, B., Nuzzo, V. & Davalos, A. Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. J. Ecol. 105, 1485–1495 (2017).

    Article 

    Google Scholar 

  • Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).

    Article 

    Google Scholar 

  • Richardson, D. M. & Kluge, R. L. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Persp. Plant Ecol. Evol. Syst. 10, 161–177 (2008).

    Article 

    Google Scholar 

  • Hartzler, R. G., Buhler, D. D. & Stoltenberg, D. E. Emergence characteristics of four annual weed species. Weed Sci. 47, 578–584 (1999).

    CAS 
    Article 

    Google Scholar 

  • Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota 50, 75–95 (2019).

    Article 

    Google Scholar 

  • Moravcová, L. et al. Seed germination, dispersal and seed bank in Heracleum mantegazzianum. In Ecology and Management of Giant Hogweed (Heracleum mantegazzianum) (eds Pyšek, P. et al.) 74–91 (CAB International, Wallingford, 2007).

    Chapter 

    Google Scholar 

  • Gioria, M. & Osborne, B. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556 (2009).

    Article 

    Google Scholar 

  • Long, R. L. et al. Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci. 56, 523–528 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Carta, A., Bottega, S. & Spanò, C. Aerobic environment ensures viability and antioxidant capacity when seeds are wet with negative effect when moist: Implications for persistence in the soil. Seed Sci. Res. 28, 16–23 (2018).

    CAS 
    Article 

    Google Scholar 

  • Pyšek, P. et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155–255 (2012).

    Google Scholar 

  • Thompson, K., Band, S. & Hodgson, J. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236–241 (1993).

    Article 

    Google Scholar 

  • Moles, A. T., Hodson, D. W. & Webb, C. J. Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89, 541–545 (2000).

    Article 

    Google Scholar 

  • Leon, R. G. & Owen, M. D. K. Artificial and natural seed banks differ in seedling emergence patterns. Weed Sci. 52, 531–537 (2004).

    CAS 
    Article 

    Google Scholar 

  • Thompson, K. & Grime, P. J. Seasonal variation in seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921 (1979).

    Article 

    Google Scholar 

  • Lambrinos, J. G. Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147, 327–334 (2006).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Wainwright, C. E., Wolkovich, E. M. & Cleland, E. E. Seasonal priority effects: Implications for invasion and restoration in a semi-arid system. J. Appl. Ecol. 49, 234–241 (2012).

    Article 

    Google Scholar 

  • Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390 (2010).

    Google Scholar 

  • Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties 2nd edn. (John Wiley & Sons, Oxford, 2001).

    Google Scholar 

  • Mihulka, S., Pyšek, P. & Pyšek, A. Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after two centuries. Preslia 75, 263–270 (2003).

    Google Scholar 

  • Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge University Press, Cambridge, 2005).

    Book 

    Google Scholar 

  • Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species 2nd edn. (Castlepoint Press, Colvend, Dalbeattie, Kirkcudrightshire, Scotland, 2007).

    Google Scholar 

  • Gioria, M. & Osborne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683 (2010).

    Article 

    Google Scholar 

  • Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).

    Article 

    Google Scholar 

  • Carta, A., Hanson, S. & Müller, J. V. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol. Evol. 6, 4166–4178 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Arène, F., Affre, L., Doxa, A. & Saatkamp, A. Temperature but not moisture response of germination shows phylogenetic constraints while both interact with seed mass and lifespan. Seed Sci. Res. 27, 110–120 (2017).

    Article 

    Google Scholar 

  • Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).

    Article 

    Google Scholar 

  • Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Thompson, K., Ceriani, R. M., Bakker, J. P. & Bekker, R. M. Are seed dormancy and persistence in soil related?. Seed Sci. Res. 13, 97–100 (2003).

    Article 

    Google Scholar 

  • Long, R. L. et al. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 90, 31–59 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pyšek, P., Sádlo, J. & Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 74, 97–186 (2002).

    Google Scholar 

  • Pyšek, P. et al. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon 53, 131–143 (2004).

    Article 

    Google Scholar 

  • WFO World Flora Online. http://www.worldfloraonline.org (2021).

  • Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30 (1980).

    Article 

    Google Scholar 

  • Butler, L. H., Hay, F. R., Ellis, R. H., Smith, R. D. & Murray, T. B. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot. 103, 1261–1270 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Article 

    Google Scholar 

  • Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?. Plant Divers. 43, 255–263 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

    PubMed 
    Article 

    Google Scholar 

  • de Villemereuil, P. & Nakagawa, S. General quantitative genetic methods for comparative biology. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–303 (Springer-Verlag, Berlin, 2014).

    Chapter 

    Google Scholar 

  • Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).

    PubMed 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022). Available online at: https://www.R-project.org


  • Source: Ecology - nature.com

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    How the universe got its magnetic field