in

Nitrogen-fixing symbiotic bacteria act as a global filter for plant establishment on islands

[adace-ad id="91168"]
  • Delavaux, C. S., Smith‐Ramesh, L. M. & Kuebbing, S. E. Beyond nutrients: a meta‐analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98, 2111–2119 (2017).

  • Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franche, C., Lindström, K. & Elmerich, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321, 35–59 (2009).

    Article 
    CAS 

    Google Scholar 

  • Razanajatovo, M. et al. Autofertility and self‐compatibility moderately benefit island colonization of plants. Glob. Ecol. Biogeogr. 28, 341–352 (2019).

    Article 

    Google Scholar 

  • Schrader, J., Wright, I. J., Kreft, H. & Westoby, M. A roadmap to plant functional island biogeography. Biol. Rev. (2021).

  • Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).

    Article 
    CAS 

    Google Scholar 

  • Vitousek, P. Nutrient cycling and limitation: Hawai’i as a model ecosystem. (Princeton Univ. Press, Princeton, NJ, 2004). Nutrient cycling and limitation: Hawai’i as a model ecosystem. Princeton Univ. Press, Princeton, NJ.

    Book 

    Google Scholar 

  • Becking, L. G. M. B. Geobiologie of inleiding tot de milieukunde. (WP Van Stockum & Zoon, 1934).

  • Peay, K. G. & Bruns, T. D. Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant–fungal interactions. N. Phytol. 204, 180–191 (2014).

    Article 

    Google Scholar 

  • Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Duchicela, J., Bever, J. D. & Schultz, P. A. Symbionts as Filters of Plant Colonization of Islands: Tests of Expected Patterns and Environmental Consequences in the Galapagos. Plants 9, 74 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Delavaux, C. S. et al. Mycorrhizal types influence island biogeography of plants. Commun. Biol. 4, 1–8 (2021).

    Article 

    Google Scholar 

  • Simonsen, A. K., Dinnage, R., Barrett, L. G., Prober, S. M. & Thrall, P. H. Symbiosis limits establishment of legumes outside their native range at a global scale. Nat. Commun. 8, 1–9 (2017).

    Article 

    Google Scholar 

  • Poole, P., Ramachandran, V. & Terpolilli, J. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16, 291–303 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sprent, J. I., Ardley, J. & James, E. K. Biogeography of nodulated legumes and their nitrogen‐fixing symbionts. N. Phytol. 215, 40–56 (2017).

    Article 
    CAS 

    Google Scholar 

  • Menge, D. N. Hedin, L. O. & Pacala, S. W. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. (2012).

  • Lambers, H., Raven, J. A., Shaver, G. R. & Smith, S. E. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. evolution 23, 95–103 (2008).

    Article 

    Google Scholar 

  • Walker, T. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).

    Article 
    CAS 

    Google Scholar 

  • Jin, L. et al. Synergistic interactions of arbuscular mycorrhizal fungi and rhizobia promoted the growth of Lathyrus sativus under sulphate salt stress. Symbiosis 50, 157–164 (2010).

    Article 
    CAS 

    Google Scholar 

  • Afkhami, M. E. & Stinchcombe, J. R. Multiple mutualist effects on genomewide expression in the tripartite association between Medicago truncatula, nitrogen‐fixing bacteria and mycorrhizal fungi. Mol. Ecol. 25, 4946–4962 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Larimer, A. L., Clay, K. & Bever, J. D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95, 1045–1054 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Primieri, S., Magnoli, S. M., Koffel, T. S., Stürmer, S. L. & Bever, J. D. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta‐analysis. N. Phytol. 233, 505-514 (2021).

  • Larimer, A. L., Bever, J. D. & Clay, K. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51, 139–148 (2010).

    Article 

    Google Scholar 

  • Werner, G. D., Cornwell, W. K., Sprent, J. I., Kattge, J. & Kiers, E. T. A single evolutionary innovation drives the deep evolution of symbiotic N 2-fixation in angiosperms. Nat. Commun. 5, 1–9 (2014).

    Article 

    Google Scholar 

  • Weigelt, P., König, C. & Kreft, H. GIFT- A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).

    Article 

    Google Scholar 

  • Werner, G. D. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. 115, 5229–5234 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bamba, M. et al. Wide distribution range of rhizobial symbionts associated with pantropical sea-dispersed legumes. Antonie van. Leeuwenhoek 109, 1605–1614 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Chen, W.-M., Lee, T.-M., Lan, C.-C. & Cheng, C.-P. Characterization of halotolerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. FEMS Microbiol. Ecol. 34, 9–16 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Toma, M. A. et al. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi. Braz. J. Microbiol. 48, 680–688 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elanchezhian, R., Rajalakshmi, S. & Jayakumar, V. Salt tolerance characteristics of rhizobium species associated with Vigna marina. Indian J. Agric. Sci. 79, 980–985 (2009).

    CAS 

    Google Scholar 

  • Chapin, F. S., Matson, P. A., Mooney, H. A. & Vitousek, P. M. Principles of Terrestrial Ecosystem Ecology (Springer, 2002).

  • Vitousek, P. M., Walker, L. R., Whiteaker, L. D. & Matson, P. A. Nutrient limitations to plant growth during primary succession in Hawaii Volcanoes National Park. Biogeochemistry 23, 197–215 (1993).

    Article 

    Google Scholar 

  • Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. N. Phytologist 177, 706–714 (2008).

    Article 
    CAS 

    Google Scholar 

  • Woodward, S. A. et al. Use of the Exotic Tree Myrica Faya by Native and Exotic Birds in Hawai’i Volcanoes National Park (University of Hawaii Press, 1990).

  • Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D. & Matson, P. A. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238, 802–804 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. N. phytologist 176, 256–273 (2007).

    Article 

    Google Scholar 

  • Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Vegetation Sci. 23, 998–1002 (2012).

    Article 

    Google Scholar 

  • Byng, J. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical J. Linn. Soc. 181, 1–20 (2016).

    Article 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. FungalRoot: Global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Article 

    Google Scholar 

  • Weigelt, P., König, C. & Kreft, H. GIFT–A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).

    Article 

    Google Scholar 

  • Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Danielson, J. J. & Gesch, D. B. “Global multi-resolution terrain elevation data 2010 (GMTED2010),” (US Geological Survey, 2011).

  • Weigelt, P. & Kreft, H. Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).

    Article 

    Google Scholar 

  • Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).

    PubMed 

    Google Scholar 

  • Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. Diversity regulation at macro‐scales: species richness on oceanic archipelagos. Glob. Ecol. Biogeogr. 24, 594–605 (2015).

    Article 

    Google Scholar 

  • Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).

    Article 

    Google Scholar 

  • Bivand, R. R packages for analyzing spatial data: a comparative case study with areal data. Geogr. Anal. 54, 488–518 (2022).

    Article 

    Google Scholar 

  • R. C. Team, R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Advancing the energy transition amidst global crises

    MIT PhD students shed light on important water and food research