in

Quantification and characterisation of commensal wild birds and their interactions with domestic ducks on a free-range farm in southwest France

[adace-ad id="91168"]
  • Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Anderson, T. Biology of the Ubiquitous House Sparrow: From Genes to Populations (Oxford University Press, 2006). https://doi.org/10.1093/acprof:oso/9780195304114.001.0001.

    Book 

    Google Scholar 

  • Johnston, R. F. Synanthropic Birds of North America. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. M. et al.) 49–67 (Springer, 2001). https://doi.org/10.1007/978-1-4615-1531-9_3.

    Chapter 

    Google Scholar 

  • Shaw, L. M., Chamberlain, D., Conway, G. & Toms, M. Spatial distribution and habitat preferences of the House Sparrow Passer domesticus in urbanised landscapes. (2011).

  • Guetté, A., Gaüzère, P., Devictor, V., Jiguet, F. & Godet, L. Measuring the synanthropy of species and communities to monitor the effects of urbanization on biodiversity. Ecol. Indic. 79, 139–154 (2017).

    Article 

    Google Scholar 

  • Slusher, M. J. et al. Are passerine birds reservoirs for influenza A viruses?. J. Wildl. Dis. 50, 792–809 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Veen, J. et al. Ornithological data relevant to the spread of Avian Influenza in Europe (phase 2): further identification and first field assessment of Higher Risk Species. (2007).

  • Caron, A., Cappelle, J. & Gaidet, N. Challenging the conceptual framework of maintenance hosts for influenza A viruses in wild birds. J. Appl. Ecol. 54, 681–690 (2017).

    Article 

    Google Scholar 

  • Olsen, B. et al. Global patterns of influenza A virus in wild birds. Science 312, 384–388 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brown, J. D., Stallknecht, D. E., Berghaus, R. D. & Swayne, D. E. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer Domesticus) and rock pigeons (Columbia Livia). J. Vet. Diagn. Invest. 21, 437–445 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Forrest, H. L., Kim, J.-K. & Webster, R. G. Virus shedding and potential for interspecies waterborne transmission of highly pathogenic H5N1 influenza virus in sparrows and chickens. J. Virol. 84, 3718–3720 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nemeth, N. M., Thomas, N. O., Orahood, D. S., Anderson, T. D. & Oesterle, P. T. Shedding and serologic responses following primary and secondary inoculation of house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with low-pathogenicity avian influenza virus. Avian Pathol. 39, 411–418 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Yamamoto, Y., Nakamura, K., Yamada, M. & Mase, M. Pathogenesis in Eurasian tree sparrows inoculated with H5N1 highly pathogenic avian influenza virus and experimental virus transmission from tree sparrows to chickens. Avian Dis. 57, 205–213 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Ellis, J. W. et al. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLOS Pathog. 17, e1009879 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gutiérrez, R. A., Sorn, S., Nicholls, J. M. & Buchy, P. Eurasian tree sparrows, risk for H5N1 virus spread and human contamination through buddhist ritual: An experimental approach. PLoS ONE 6, e28609 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Caron, A., Cappelle, J., Cumming, G. S., de Garine-Wichatitsky, M. & Gaidet, N. Bridge hosts, a missing link for disease ecology in multi-host systems. Vet. Res. 46, 1–11 (2015).

    CAS 
    Article 

    Google Scholar 

  • Guinat, C. et al. Duck production systems and highly pathogenic avian influenza H5N8 in France, 2016–2017. Sci. Rep. 9, 1–9 (2019).

    CAS 
    Article 

    Google Scholar 

  • EFSA et al. Scientific report Avian influenza overview October 2016–August 2017. EFSA J. 15, 101 (2017).

    Google Scholar 

  • EFSA et al. Scientific report: Avian influenza overview December 2020–February 2021. EFSA J. 19, 74 (2021).

    Google Scholar 

  • Le Bouquin, S. et al. L’épisode d’influenza aviaire en France en 2015–2016: Situation épidémiologique au 30 juin 2016. Bull. Epidémiologique Santé Anim. Aliment.—DGAL—Anses 1–7 (2016).

  • EFSA et al. Avian influenza overview December 2021–March 2022. EFSA J. 20, e07289 (2022).

    Google Scholar 

  • DGAL. Arrêté du 8 février 2016 relatif aux mesures de biosécurité applicables dans les exploitations de volailles et d’autres oiseaux captifs dans le cadre de la prévention contre l’influenza aviaire. AGRG1603907A, (2016).

  • Koch, G. & Elbers, A. R. W. Outdoor ranging of poultry: A major risk factor for the introduction and development of high-pathogenicity avian influenza. NJAS—Wagening. J. Life Sci. 54, 179–194 (2006).

    Article 

    Google Scholar 

  • Delpont, M. et al. Biosecurity practices on foie gras duck farms Southwest France. Prev. Vet. Med. 158, 78–88 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Bicout, J. D., Artois, M., Musseau, R., Caparros, O. & Lubac, S. Which wild birds are potentially at risk for contacts between wild avifauna and with poultry? in 9èmes Journées de la Recherche Avicole, Tours, France 5pp (World’s Poultry Science Association (WPSA), 2011).

  • Gotteland, C., Lubac, S. & Bicout, D. Où trouve-t-on les oiseaux sauvages aux alentours des élevages? Risque de contact oiseaux sauvages et volailles. Epidemiol. Sante Anim. 55, 103–115 (2009).

    Google Scholar 

  • Lubac, S., Musseau, R., Caparros, O., Artois, M. & Bicout, D. J. Interactions entre l’avifaune sauvage et les élevages de volailles: Quel risque épidémiologique vis à vis de l’Influenza aviaire ?. Innov. Agron. 25, 299–312 (2012).

    Google Scholar 

  • Burns, F. et al. Abundance decline in the avifauna of the European Union reveals cross-continental similarities in biodiversity change. Ecol. Evol. 0, 1–14 (2021).

  • Jeliazkov, A. et al. Impacts of agricultural intensification on bird communities: New insights from a multi-level and multi-facet approach of biodiversity. Agric. Ecosyst. Environ. 216, 9–22 (2016).

    Article 

    Google Scholar 

  • Chiatante, G., Pellitteri-Rosa, D., Torretta, E., Nonnis Marzano, F. & Meriggi, A. Indicators of biodiversity in an intensively cultivated and heavily human modified landscape. Ecol. Indic. 130, 108060 (2021).

    Article 

    Google Scholar 

  • QGIS Development Team. QGIS Geographic Information System. (QGIS Association, 2022).

  • Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).

    Article 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    ADS 
    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

    Google Scholar 

  • Bacigalupo, S. A., Dixon, L. K., Gubbins, S., Kucharski, A. J. & Drewe, J. A. Towards a unified generic framework to define and observe contacts between livestock and wildlife: A systematic review. PeerJ 8, e10221 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. & Seto, W. H. How far droplets can move in indoor environments: revisiting the Wells evaporation-falling curve. Indoor Air 17, 211–225 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zuo, Z. et al. Association of airborne virus infectivity and survivability with its carrier particle size. Aerosol Sci. Technol. 47, 373–382 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pons, P. & Latapy, M. Computing Communities in Large Networks Using Random Walks. in Computer and Information Sciences : ISCIS 2005 284–293 (Springer, 2005). https://doi.org/10.1007/11569596_31.

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: Estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).

    ADS 
    Article 

    Google Scholar 

  • Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Routledge, 1988). https://doi.org/10.4324/9780203771587.

    Book 
    MATH 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2022).

  • Bartoń, K. MuMIn: Multi-Model Inference. (2022).

  • Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lefcheck, J., Byrnes, J. & Grace, J. piecewiseSEM: Piecewise Structural Equation Modeling. (2020).

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • UICN France, MNHN, LPO BirdLife France, SEOF & ONCFS. La Liste rouge des espèces menacées en France—Chapitre Oiseaux de France métropolitaine. (2016).

  • Bestman, M., de Jong, W., Wagenaar, J.-P. & Weerts, T. Presence of avian influenza risk birds in and around poultry free-range areas in relation to range vegetation and openness of surrounding landscape. Agrofor. Syst. 92, 1001–1008 (2018).

    Article 

    Google Scholar 

  • Scott, A. B. et al. Wildlife presence and interactions with chickens on australian commercial chicken farms assessed by camera traps. Avian Dis. 62, 65–72 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Scherer, A. L., de Scherer, J. F. M., Petry, M. V. & Sander, M. Occurrence and interaction of wild birds at poultry houses in southern Brazil. Rev. Bras. Ornitol.: Braz. J. Ornithol. 19, 74–79 (2011).

    Google Scholar 

  • Burns, T. E. et al. Use of observed wild bird activity on poultry farms and a literature review to target species as high priority for avian influenza testing in 2 regions of Canada. Can. Vet. J. 53, 158–166 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Elbers, A. R. W. & Gonzales, J. L. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound. Emerg. Dis https://doi.org/10.1111/tbed.13382 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B. Biol. Sci. 370, 20140107 (2015).

    Article 

    Google Scholar 

  • Clergeau, P., Savard, J.-P.L., Mennechez, G. & Falardeau, G. Bird abundance and diversity along an urban-rural gradient: A comparative study between two cities on different continents. The Condor 100, 413–425 (1998).

    Article 

    Google Scholar 

  • Le Gall-Ladevèze, C. et al. Detection of a novel enterotropic Mycoplasma gallisepticum-like in European starling (Sturnus vulgaris) around poultry farms in France. Transbound. Emerg. Dis. 0, 1–12 (2021).

  • Shriner, S. A. & Root, J. J. A review of avian influenza A virus associations in synanthropic birds. Viruses 12, 1209 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Shriner, S. A. et al. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak. Sci. Rep. 6, 36237 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Davies, N. B. Food, flocking and territorial behaviour of the pied wagtail (Motacilla alba yarrellii Gould) in winter. J. Anim. Ecol. 45, 235–253 (1976).

    Article 

    Google Scholar 

  • Snow, D. W., Perrins, C. M. & Gillmor, R. The birds of the western palaearctic. Vol. 2, Passerines. vol. 2 (Oxford University Press, 1998).

  • Rigal, S. et al. Biotic homogenisation in bird communities leads to large-scale changes in species associations. Oikos 2022, e08756 (2022).

    Article 

    Google Scholar 

  • Dalziel, A. E., Delean, S., Heinrich, S. & Cassey, P. Persistence of low pathogenic influenza A virus in water: A systematic review and quantitative meta-analysis. PLoS ONE 11, e0161929 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Keeler, S. P., Dalton, M. S., Cressler, A. M., Berghaus, R. D. & Stallknecht, D. E. Abiotic factors affecting the persistence of avian influenza virus in surface waters of waterfowl habitats. Appl. Environ. Microbiol. 80, 2910–2917 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Marois, C., Dufour-Gesbert, F. & Kempf, I. Polymerase chain reaction for detection of mycoplasma gallisepticum in environmental samples. Avian Pathol. 31, 163–168 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Blagodatski, A. et al. Avian influenza in wild birds and poultry: dissemination pathways, monitoring methods, and virus ecology. Pathogens 10, 630 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Stoffolano, J. G. Jr. & Geden, C. J. Succession of manure arthropods at a poultry farm in massachusetts, USA, With observations on carcinops pumilio (Coleoptera: Histeridae) sex ratios, ovarian condition, and body size1. J. Med. Entomol. 24, 212–220 (1987).

    Article 

    Google Scholar 

  • Ushio, M. et al. Demonstration of the potential of environmental DNA as a tool for the detection of avian species. Sci. Rep. 8, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • Fontaine, B. et al. Suivi des oiseaux communs en France 1989–2019 : 30 ans de suivis participatifs—Executive summary of the 2019 common birds monitoring report. https://inpn.mnhn.fr/actualites/lire/12721/bilan-des-30-ans-du-suivi-temporel-des-oiseaux-communs-stoc (2020).

  • Seamans, T. & Gosser, A. Bird dispersal techniques. in Wildlife Damage Management Technical Series 12pp (USDA, APHIS, WS National Wildlife Research Center, 2016). https://doi.org/10.32747/2016.7207730.ws.

  • Elbers, A. R. W. & Gonzales, J. L. Efficacy of an automated laser for reducing wild bird visits to the free range area of a poultry farm. Sci. Rep. 11, 12779 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Conover, M. R. & Perito, J. J. Response of starlings to distress calls and predator models holding conspecific prey. Z. Für Tierpsychol. 57, 163–172 (1981).

    Article 

    Google Scholar 

  • Aubin, T. Synthetic bird calls and their application to scaring methods. Ibis 132, 290–299 (1990).

    Article 

    Google Scholar 

  • Guinat, C. et al. Biosecurity risk factors for highly pathogenic avian influenza (H5N8) virus infection in duck farms France. Transbound. Emerg. Dis. 67, 2961–2970 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Gaide, N. et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 11, 5928 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Spekreijse, D., Bouma, A., Koch, G. & Stegeman, A. Quantification of dust-borne transmission of highly pathogenic avian influenza virus between chickens. Influenza Other Respir. Viruses 7, 132–138 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Torremorell, M. et al. Investigation into the airborne dissemination of H5N2 highly pathogenic avian influenza virus during the 2015 spring outbreaks in the midwestern United States. Avian Dis. 60, 637–643 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Caron, A., Grosbois, V., Etter, E., Gaidet, N. & de Garine-Wichatitsky, M. Bridge hosts for avian influenza viruses at the wildlife/domestic interface: An eco-epidemiological framework implemented in southern Africa. Prev. Vet. Med. 117, 590–600 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Helping renewable energy projects succeed in local communities

    Could used beer yeast be the solution to heavy metal contamination in water?