in

Response of litter decomposition and the soil environment to one-year nitrogen addition in a Schrenk spruce forest in the Tianshan Mountains, China

[adace-ad id="91168"]
  • 1.

    Berg, B. et al. Factors influencing limit values for pine needle litter decomposition: A synthesis for boreal and temperate pine forest systems. Biogeochemistry 100, 57–73. https://doi.org/10.1007/s10533-009-9404-y (2010).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Hobbie, S. E. et al. Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecol. Monogr. 82, 389–405 (2012).

    Google Scholar 

  • 3.

    Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • 4.

    Talbot, J. M., Yelle, D. J., Nowick, J. S. & Treseder, K. K. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108, 279–295 (2012).

    CAS 

    Google Scholar 

  • 5.

    Pei, G. et al. Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. For. Ecol. Manage. 440, 61–69 (2019).

    Google Scholar 

  • 6.

    Couˆteaux, M., Bottner, P. & Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66 (1995).

    Google Scholar 

  • 7.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889. https://doi.org/10.1126/science.1136674 (2008).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • 8.

    Kanakidou, M. et al. Past, present, and future atmospheric nitrogen deposition. J. Atmos. Sci. 73, 2039–2047. https://doi.org/10.1175/JAS-D-15-0278.1 (2016).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar 

  • 9.

    Zhu, J. et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems. Sci. Total Environ. 511, 777–785 (2015).

    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • 10.

    Liu, X. et al. Nitrogen deposition and its ecological impact in China: An overview. Environ. Pollut. 159, 2251–2264. https://doi.org/10.1016/j.envpol.2010.08.002 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 11.

    Chen, H. Y. H. & Zhang, T. Data for: Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems. Appl. Soil. Ecol. 1, 35–42 (2018).

    Google Scholar 

  • 12.

    Knorr, M., Frey, S. & Curtis, P. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 86, 3252–3257. https://doi.org/10.1890/05-0150 (2005).

    Article 

    Google Scholar 

  • 13.

    Hobbie, S. E. & Vitousek, P. M. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81, 1867–1877 (2000).

    Google Scholar 

  • 14.

    Zhou, S. X. et al. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Plant Soil 420(1–2), 135–145 (2017).

    CAS 

    Google Scholar 

  • 15.

    Wang, Q., Kwak, J., Choi, W. & Chang, S. X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 250, 143–154 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • 16.

    Magill, A. H. & Aber, J. D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203, 301–311 (1998).

    CAS 

    Google Scholar 

  • 17.

    Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Zhang, W. et al. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 97, 2834–2843 (2016).

    PubMed 

    Google Scholar 

  • 19.

    Wang, M. et al. Effects of sediment-borne nutrient and litter quality on macrophyte decomposition and nutrient release. Hydrobiologia 787, 205–215. https://doi.org/10.1007/s10750-016-2961-x (2017).

    Article 
    CAS 

    Google Scholar 

  • 20.

    Talbot, J. M. & Treseder, K. K. Interactions among lignin, cellulose, and nitrogen drive litter chemistry–decay relationships. Ecology 93, 345–354 (2012).

    PubMed 

    Google Scholar 

  • 21.

    Zhang, T. A., Luo, Y. & Ruan, H. Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems. Appl. Soil Ecol. 128, 35–42. https://doi.org/10.1016/j.apsoil.2018.04.004 (2018).

    Article 
    ADS 

    Google Scholar 

  • 22.

    Kuperman, R. G. Litter decomposition and nutrient dynamics in oak–hickory forests along a historic gradient of nitrogen and sulfur deposition. Soil Biol. Biochem. 31, 237–244 (1999).

    CAS 

    Google Scholar 

  • 23.

    Cleveland, C. C. & Townsend, A. R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. U.S.A. 103, 10316–10321 (2006).

    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar 

  • 24.

    Chen, J. et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Glob. Change Biol. 23, 1328–1337 (2017).

    ADS 

    Google Scholar 

  • 25.

    Lu, X., Mao, Q., Gilliam, F. S., Luo, Y. & Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 20, 3790–3801 (2014).

    ADS 

    Google Scholar 

  • 26.

    Yang, D., Song, L. & Jin, G. The soil C:N: P stoichiometry is more sensitive than the leaf C:N: P stoichiometry to nitrogen addition: A four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant Soil 442, 183–198. https://doi.org/10.1007/s11104-019-04165-z (2019).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Penuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    PubMed 
    ADS 

    Google Scholar 

  • 28.

    Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459–462. https://doi.org/10.1038/nature11917 (2013).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • 29.

    Kang, Y. et al. High-resolution ammonia emissions inventories in China from 1980 to 2012. Atmos. Chem. Phys. 16, 2043–2058 (2015).

    ADS 

    Google Scholar 

  • 30.

    Huo, Y. et al. Climate–growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains. northwest China. Trees 31, 429–439 (2017).

    Google Scholar 

  • 31.

    Zhonglin, X. et al. Climatic and topographic variables control soil nitrogen, phosphorus, and nitrogen: Phosphorus ratios in a Picea schrenkiana forest of the Tianshan Mountains. PLoS ONE 13(11), e0204130 (2018).

    Google Scholar 

  • 32.

    Zhang, T. et al. The impacts of climatic factors on radial growth patterns at different stem heights in Schrenk spruce (Picea schrenkiana). Trees 34(1), 163–175 (2020).

    Google Scholar 

  • 33.

    Chen, X., Gong, L. & Liu, Y. The ecological stoichiometry and interrelationship between litter and soil under seasonal snowfall in Tianshan Mountain. Ecosphere 9(11), e02520 (2018).

    Google Scholar 

  • 34.

    Gong, L. & Zhao, J. The response of fine root morphological and physiological traits to added nitrogen in Schrenk’s spruce (Picea schrenkiana) of the Tianshan mountains, China. PeerJ 7, e8194 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Zhu, H., Zhao, J. & Gong, L. The morphological and chemical properties of fine roots respond to nitrogen addition in a temperate Schrenk’s spruce (Picea schrenkiana) forest. Sci. Rep. 11(1), 3839. https://doi.org/10.1038/s41598-021-83151-x (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar 

  • 36.

    Mo, J. et al. Decomposition responses of pine (Pinus massoniana) needles with two different nutrient-status to N deposition in a tropical pine plantation in southern China. Ann. For. Sci. 65, 405–405 (2008).

    Google Scholar 

  • 37.

    Wen, Z. et al. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 144, 106022. https://doi.org/10.1016/j.envint.2020.106022 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • 38.

    Liu, W. et al. Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology 101, e03053. https://doi.org/10.1002/ecy.3053 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    Yao, M. et al. Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biol. Biochem. 79, 81–90 (2014).

    CAS 

    Google Scholar 

  • 40.

    Berg, B. & Matzner, E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 5, 1–25. https://doi.org/10.1139/a96-017 (1997).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Liu, W. et al. Nonlinear responses of the Vmax and Km of hydrolytic and polyphenol oxidative enzymes to nitrogen enrichment. Soil Biol. Biochem. 141, 107656. https://doi.org/10.1016/j.soilbio.2019.107656 (2020).

    Article 
    CAS 

    Google Scholar 

  • 42.

    Vestgarden, L. S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: Effects of internal and external nitrogen. Soil Biol. Biochem. 33, 465–474 (2001).

    CAS 

    Google Scholar 

  • 43.

    Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).

    PubMed 
    CAS 

    Google Scholar 

  • 44.

    Sun, T., Dong, L., Wang, Z., Lu, X. & Mao, Z. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biol. Biochem. 93, 50–59 (2016).

    CAS 

    Google Scholar 

  • 45.

    Sjoberg, G., Nilsson, S. I., Persson, T. & Karlsson, P. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biol. Biochem. 36, 1761–1768 (2004).

    CAS 

    Google Scholar 

  • 46.

    Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    CAS 

    Google Scholar 

  • 47.

    Carreiro, M. M., Sinsabaugh, R. L., Repert, D. A. & Parkhurst, D. F. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81, 2359–2365. https://doi.org/10.1890/0012-9658(2000)081[2359:meseld]2.0.co;2 (2000).

    Article 

    Google Scholar 

  • 48.

    Hobbie, S. E. Nitrogen effects on decomposition: A five-year experiment in eight temperate sites. Ecology 89, 2633–2644 (2008).

    PubMed 

    Google Scholar 

  • 49.

    Mo, J., Brown, S., Xue, J., Fang, Y. & Li, Z. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 282, 135–151 (2006).

    CAS 

    Google Scholar 

  • 50.

    Ajwa, H. A., Dell, C. J. & Rice, C. W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol. Biochem. 31, 769–777. https://doi.org/10.1016/S0038-0717(98)00177-1 (1999).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Li, Q. et al. Biochar mitigates the effect of nitrogen deposition on soil bacterial community composition and enzyme activities in a Torreya grandis orchard. For. Ecol. Manage. 457, 117717 (2020).

    Google Scholar 

  • 52.

    Chen, J. et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086. https://doi.org/10.1111/gcb.15218 (2020).

    Article 
    ADS 

    Google Scholar 

  • 53.

    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).

    PubMed 
    CAS 

    Google Scholar 

  • 54.

    Corrales, A., Turner, B. L., Tedersoo, L., Anslan, S. & Dalling, J. W. Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecol. 27, 14–23 (2017).

    Google Scholar 

  • 55.

    Cusack, D. F. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol. Biochem. 57, 192–203 (2013).

    CAS 

    Google Scholar 

  • 56.

    Xiao, S. et al. Effects of one-year simulated nitrogen and acid deposition on soil respiration in a subtropical plantation in China. Forests 11, 235 (2020).

    Google Scholar 

  • 57.

    Liang, X. et al. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. Glob. Change Biol. 26, 3585–3600. https://doi.org/10.1111/gcb.15071 (2020).

    Article 
    ADS 

    Google Scholar 

  • 58.

    Peng, Y. et al. Soil biochemical responses to nitrogen addition in a secondary evergreen broad-leaved forest ecosystem. Sci. Rep. 7, 2783–2783. https://doi.org/10.1038/s41598-017-03044-w (2017).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar 

  • 59.

    Tian, D. et al. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 024019 (2015).

    ADS 

    Google Scholar 

  • 60.

    Gill, A. L. et al. Experimental nitrogen fertilisation globally accelerates, then slows decomposition of leaf litter. Ecol. Lett. 24, 802–811 (2021).

    PubMed 

    Google Scholar 

  • 61.

    Cotrufo, M. F. et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nat. Geosci. 8, 776–779 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 62.

    Lu, X. et al. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proc. Natl. Acad. Sci. USA 118, e2020790118 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 63.

    Kallenbach, C. M. et al. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 1–10 (2016).

    Google Scholar 

  • 64.

    Sun, S. et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau. Geoderma 353, 283–292 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 65.

    Liu, G. Soil Physical and Chemical Analysis and Description of Soil Profiles (Elsevier, 1996).

    Google Scholar 

  • 66.

    Lotse, E. G. Chemical analysis of ecological materials. Soil Sci. 121, 373 (1976).

    ADS 

    Google Scholar 

  • 67.

    Anderson, J. M. & Ingram, J. Tropical soil biology and fertility: A handbook of methods. Soil Sci. 157, 265 (1994).

    ADS 

    Google Scholar 

  • 68.

    Roberts, J. D. & Rowland, A. P. Cellulose fractionation in decomposition studies using detergent fibre pre-treatment methods. Commun. Soil Plant Anal. 29, 11–14 (1998).

    Google Scholar 

  • 69.

    Kotroczó, Z. et al. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol. Biochem. 70, 237–243 (2014).

    Google Scholar 

  • 70.

    Paolo, N., Brunello, C., Stefano, C. & Emilio, M. Extraction of phosphatase, urease, proteases, organic carbon, and nitrogen from soil. Soil Sci. Soc. Am. J. https://doi.org/10.2136/SSSAJ1980.03615995004400050028X (1981).

    Article 

    Google Scholar 

  • 71.

    Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515 (1990).

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Pricing carbon, valuing people

    Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage