in

The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables

[adace-ad id="91168"]
  • Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ma, Q. et al. Gut bacterial communities of Lymantria xylina and their associations with host development and diet. Microorganisms 9(9), 1860 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yuan, X. et al. Comparison of gut bacterial communities of Grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants. Int. J. Mol. Sci. 22(13), 6843 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liu, Y. et al. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 76(4), 1353–1362 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lauzon, C. R., Sjogren, R. E. & Prokopy, R. J. Enzymatic capabilities of bacteria associated with apple maggot flies: A postulated role in attraction. J. Chem. Ecol. 26, 953–967 (2000).

    CAS 
    Article 

    Google Scholar 

  • Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).

    Article 

    Google Scholar 

  • Kaltenpoth, M. & Engl, T. Defensive microbial symbionts in Hymenoptera. Funct. Ecol. 28(2), 315–327 (2014).

    Article 

    Google Scholar 

  • Bruner-Montero, G., Wood, M., Horn, H. A., Gemperline, E., Li, L. & Currie, C. R. Symbiont-mediated protection of acromyrmex leaf-cutter ants from the entomopathogenic fungus Metarhizium anisopliae. mBio 12(6), e0188521 (2021).

  • Zhang, Q. et al. Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria. Parasit. Vector. 14(1), 598 (2021).

    CAS 
    Article 

    Google Scholar 

  • Zhang, S., et al. The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 5(2), e00692–19 (2020).

  • Sato, Y. et al. Insecticide resistance by a host-symbiont reciprocal detoxification. Nat. Commun. 12(1), 6432 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jordan, H. R. & Tomberlin, J. K. Microbial influence on reproduction, conversion, and growth of mass produced insects. Curr. Opin. Insect Sci. 48, 57–63 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Strano, C. P., Malacrinò, A., Campolo, O. & Palmeri, V. Influence of host plant on Thaumetopoea pityocampa gut bacterial community. Microb. Ecol. 75(2), 487–494 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15(3), e0229848 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 114, 9641–9646 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scully, E. D. et al. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis). Sci. Rep. 8(1), 9620 (2018).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. F. irst report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 11(10), e0165632 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1–10 (2020).

    Article 
    CAS 

    Google Scholar 

  • Beuzelin, J. M., Larsen, D. J., Roldán, E. L. & Schwan Resende, E. Susceptibility to chlorantraniliprole in fall armyworm (Lepidoptera: Noctuidae) populations infesting sweet corn in southern florida. J. Econ. Entomol. 115(1), 224–232 (2022).

  • Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).

    Article 

    Google Scholar 

  • Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9(1), 2792 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Mason, C. J., Hoover, K. & Felton, G. W. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci. Rep. 119(1), 4429 (2021).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Lv, D. et al. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int. J. Mol. Sci. 22(20), 11266 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, Y. P. et al. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects 13(4), 373 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, J. et al. Cabbage cultivars influence transfer and toxicity of cadmium in soil-Chinese flowering cabbage Brassica campestris-cutworm Spodoptera litura larvae. Ecotoxicol. Environ. Saf. 213, 112076 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abdullah, A., Ullah, M. I., Raza, A. M., Arshad, M. & Afzal, M. Host plant selection affects biological parameters in armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Pak. J. Zool. 51(6), 2117–2123 (2019).

    Article 

    Google Scholar 

  • Gopalakrishnan, R. & Kalia, V. K. Biology and biometric characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on different host plants with regard to diet. Pest Manag. Sci. 78(5), 2043–2051 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • He, L. et al. Larval diet affects development and reproduction of East Asian strain of the fall armyworm Spodoptera frugiperda. J. Integr. Agr. 20(3), 736–744 (2021).

    Article 

    Google Scholar 

  • He, L., Wu, Q., Gao, X. & Wu, K. Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J. Integr. Agr. 20(3), 745–754 (2021).

    Article 

    Google Scholar 

  • Xie, W. et al. Age-stage, two-sex life table analysis of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) reared on maize and kidney bean. Chem. Biol. Technol. Ag. 8, 44 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gopalakrishnan, R. & Kalia, V. K. Biology and biometric characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on different host plants with regard to diet. Pest Manag. Sci. 78(5), 2043–2051 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, P. et al. Host selection and adaptation of the invasive pest Spodoptera frugiperda to indica and japonica rice cultivars. Entomol. Gen. https://doi.org/10.1127/entomologia/2022/1330 (2022).

    Article 

    Google Scholar 

  • Wu, L. et al. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. J. Integr. Agr. 20(3), 755–763 (2021).

    Article 

    Google Scholar 

  • Wu, F. et al. Population development, fecundity, and flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on three green manure crops: implications for an ecologically based pest management approach in China. J. Econ. Entomol. 115(1), 124–132 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Hou, M. L. & Sheng, C. F. Effects of different foods on growth, development and reproduction of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Acta Entomol. Sin. 43, 168–175 (2000).

    CAS 

    Google Scholar 

  • Wang, X. L. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Näsvall, K. et al. Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly. Mol. Ecol. 30(2), 499–516 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Ort, B. S., Bantay, R. M., Pantoja, N. A. & O’Grady, P. M. Fungal diversity associated with Hawaiian Drosophila host plants. PLoS ONE 7(7), e40550 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Sci. Rep. 10(1), 16550 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeng, J. Y. et al. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Pestic. Biochem Physiol. 164, 196–202 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, C., Zhang, J., Tan, H., Fu, Z. & Wang, X. Characterization of the gut microbiome in the beet armyworm Spodoptera exigua in response to the short-term thermal stress. J. Asia-Pac. Entomol. 25, 101863 (2022).

    Article 

    Google Scholar 

  • Rozadilla, G., Cabrera, N. A., Virla, E. G., Greco, N. M. & McCarthy, C. B. Gut microbiota of Spodoptera frugiperda (J.E. Smith) larvae as revealed by metatranscriptomic analysis. J. Appl. Entomol. 144, 351–363 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ugwu, J. A., Liu, M., Sun, H. & Asiegbu, F. O. Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. J. Appl. Entomol. 144, 764–776 (2020).

    CAS 
    Article 

    Google Scholar 

  • Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, F. Y. et al. Differential profiles of gut microbiota and metabolites associated with host shift of Plutella xylostella. Int. J. Mol. Sci. 21, 6283 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Shao, Y. et al. Crystallization of alpha- and beta-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochem. Mol. Biol. 41, 273–281 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Santos, T. A., Scorzoni, L., Correia, R., Junqueira, J. C. & Anbinder, A. L. Interaction between Lactobacillus reuteri and periodontopathogenic bacteria using in vitro and in vivo (G mellonella) approaches. Pathog. Dis. 78(8), ftaa044 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Biedermann, P. & Vega, F. E. Ecology and evolution of insect-fungus mutualisms. Annu. Rev. Entomol. 65, 431–455 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guo, Q., Yao, Z., Cai, Z., Bai, S. & Zhang, H. Gut fungal community and its probiotic effect on Bactrocera dorsalis. Insect Sci. https://doi.org/10.1111/1744-7917.12986 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bing, X. L., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2117 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Keebaugh, E. S., Ryuichi, Y., Benjamin, O., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. Iscience 4, 247–259 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deutscher, A. T., Chapman, T. A., Shuttleworth, L. A., Riegler, M. & Reynolds, O. L. Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs. BMC Microbiol. 19, 287 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).

    Article 

    Google Scholar 

  • Sun, J., Xia, Y. & Ming, D. Whole-genome sequencing and bioinformatics analysis of Apiotrichum mycotoxinivorans: Predicting putative zearalenone-degradation enzymes. Front. Microbiol. 11, 1866 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qian, X. J. et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Apiotrichum porosum DSM27194. Fuel 290, 119811 (2021).

    CAS 
    Article 

    Google Scholar 

  • Passos, D. F., Pereira, N. & Castro, A. M. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain Chem. 14, 60–66 (2018).

    Article 

    Google Scholar 

  • Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96(9), fiaa116 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Shu, B. et al. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics 22, 391 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    New hardware offers faster computation for artificial intelligence, with much less energy

    The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs