in

Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae

[adace-ad id="91168"]
  • War, A. R. et al. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 7, 1306–1320 (2012).

    Article 

    Google Scholar 

  • Pentzold, S., Zagrobelny, M., Roelsgaard, P. S., Møller, B. L. & Bak, S. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. PLoS ONE 9, e91337. https://doi.org/10.1371/journal.pone.0091337 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abdalsamee, M. K., Giampa, M., Niehaus, K. & Müller, C. Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases. Insect Biochem. Mol. Biol. 52, 115–123. https://doi.org/10.1016/j.ibmb.2014.07.002 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Winde, I. & Wittstock, U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72, 1566–1575. https://doi.org/10.1016/j.phytochem.2011.01.016 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sporer, T., Körnig, J. & Beran, F. Ontogenetic differences in the chemical defence of flea beetles influence their predation risk. Funct Ecol. 34, 1370–1379. https://doi.org/10.1111/1365-2435.13548 (2020).

    Article 

    Google Scholar 

  • Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20190068. https://doi.org/10.1098/rstb.2019.0068 (2019).

    CAS 
    Article 

    Google Scholar 

  • Wäckers, F. L., Romeis, J. & van Rijn, P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu. Rev. Entomol. 52, 301–323. https://doi.org/10.1146/annurev.ento.52.110405.091352 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Altermatt, F. & Pearse, I. S. Similarity and specialization of the larval versus adult diet of european butterflies and moths. Am. Nat. 178, 372–382. https://doi.org/10.1086/661248 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9, e86995. https://doi.org/10.1371/journal.pone.0086995 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shukla, S. P., Sanders, J. G., Byrne, M. J. & Pierce, N. E. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol. Ecol. 25, 6092–6106. https://doi.org/10.1111/mec.13901 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Blažević, I. et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169, 112100. https://doi.org/10.1016/j.phytochem.2019.112100 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wittstock, U., Kurzbach, E., Herfurth, A. M. & Stauber, E. J. Glucosinolate breakdown. Adv. Botanical Res. – Glucosinolates 80, 125–169. https://doi.org/10.1016/bs.abr.2016.06.006 (2016).

    CAS 
    Article 

    Google Scholar 

  • Jeschke, V., Gershenzon, J. & Vassão, D. G. in Glucosinolates Vol. 80 Advances in Botanical Research (ed S. Kopriva), 199–245 (2016).

  • Sun, R. et al. Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 9, e51029, doi:https://doi.org/10.7554/eLife.51029 (2019).

  • Malka, O. et al. Glucosinolate desulfation by the phloem-feeding insect Bemisia tabaci. J. Chem. Ecol. 42, 230–235. https://doi.org/10.1007/s10886-016-0675-1 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schramm, K., Vassão, D. G., Reichelt, M., Gershenzon, J. & Wittstock, U. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem. Mol. Biol. 42, 174–182. https://doi.org/10.1016/j.ibmb.2011.12.002 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Beran, F. et al. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc. Natl. Acad. Sci. USA 111, 7349–7354. https://doi.org/10.1073/pnas.1321781111 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beran, F. et al. One pathway is not enough: The cabbage stem flea beetle Psylliodes chrysocephala uses multiple strategies to overcome the glucosinolate-myrosinase defense in its host plants. Front. Plant Sci. 9, 1754. https://doi.org/10.3389/fpls.2018.01754 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, C. et al. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27, 2505–2516 (2001).

    Article 

    Google Scholar 

  • Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T. & Kroymann, J. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA. 99, 11223–11228 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wittstock, U. et al. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA. 101, 4859–4864 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Falk, K. L. & Gershenzon, J. The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J. Chem. Ecol. 33, 1542–1555. https://doi.org/10.1007/s10886-007-9331-0 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Vanhaelen, N., Haubruge, E., Lognay, G. & Francis, F. Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pestic. Biochem. Phys. 71, 170–177 (2001).

    CAS 
    Article 

    Google Scholar 

  • Friedrichs, J. et al. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Insect Biochem. Mol. Biol. 124, 103431. https://doi.org/10.1016/j.ibmb.2020.103431 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Reifenrath, K., Riederer, M. & Müller, C. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).

    CAS 
    Article 

    Google Scholar 

  • Cataldi, T. R. I., Lelario, F., Orlando, D. & Bufo, S. A. Collision-induced dissociation of the A+2 isotope ion facilitates glucosinolates structure elucidation by electrospray Ionization-Tandem Mass Spectrometry with a linear Quadrupole Ion Trap. Anal. Chem. 82, 5686–5696. https://doi.org/10.1021/ac100703w (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cataldi, T. R. I., Rubino, A., Lelario, F. & Bufo, S. A. Naturally occuring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2374–2388, doi:https://doi.org/10.1002/rcm.3101 (2007).

  • Yang, Z. L., Kunert, G., Sporer, T., Kornig, J. & Beran, F. Glucosinolate abundance and composition in Brassicaceae influence sequestration in a specialist flea beetle. J. Chem. Ecol. 46, 186–197. https://doi.org/10.1007/s10886-020-01144-y (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smirnoff, N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biol. and Medic. 122, 116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033 (2018).

    CAS 
    Article 

    Google Scholar 

  • Agerbirk, N., De Vos, M., Kim, J. H. & Jander, G. Indole glucosinolate breakdown and its biological effects. Phytochem. Rev. 8, 101–120. https://doi.org/10.1007/s11101-008-9098-0 (2009).

    CAS 
    Article 

    Google Scholar 

  • Goggin, F. L., Avila, C. A. & Lorence, A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. BioEssays 32, 777–790. https://doi.org/10.1002/bies.200900187 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kim, J. H., Lee, B. W., Schroeder, F. C. & Jander, G. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 54, 1015–1026 (2008).

    CAS 
    Article 

    Google Scholar 

  • Liu, T. T. & Yang, T. S. Stability and antimicrobial activity of allyl isothiocyanate during long-term storage in an oil-in-water emulsion. J. Food Sci. 75, C445–C451. https://doi.org/10.1111/j.1750-3841.2010.01645.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Luang-In, V. & Rossiter, J. T. Stability studies of isothiocyanates and nitriles in aqueous media. Songklanakarin J. Sci. Technol. 37, 625–630 (2015).

    CAS 

    Google Scholar 

  • Tsao, R., Yu, Q., Friesen, I., Potter, J. & Chiba, M. Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food Chem. 48, 1898–1902. https://doi.org/10.1021/jf9906578 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Brodbeck, B. & Strong, D. in Insect Outbreaks (eds P. Barbosa & J. C. Schultz) Ch. 14, 347–363 (Academic Press, INC., 1987).

  • Kumar, V. et al. Differential distribution of amino acids in plants. Amino Acids 49, 821–869. https://doi.org/10.1007/s00726-017-2401-x (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Millar, K. A., Gallagher, E., Burke, R., McCarthy, S. & Barry-Ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 82, doi:https://doi.org/10.1016/j.jfca.2019.103233 (2019).

  • Miller, R. W., McGrew, C., Wolff, I. A., Jones, Q. & Vanetten, C. H. Seed meal amino acids – amino acid composition of seed meals from 41 species of Cruciferae. J. Agric. Food Chem. 10, 426-430. https://doi.org/10.1021/jf60123a023 (1962).

    Article 

    Google Scholar 

  • Fischer, W. N. et al. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 29, 717–731. https://doi.org/10.1046/j.1365-313X.2002.01248.x (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, R. & Halford, N. G. Asparagine in plants. Ann. Appl. Biol. 150, 1–26. https://doi.org/10.1111/j.1744-7348.2006.00104.x (2007).

    CAS 
    Article 

    Google Scholar 

  • Leroy, P. D. et al. Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod-Plant Inte. 5, 193–199. https://doi.org/10.1007/s11829-011-9128-5 (2011).

    Article 

    Google Scholar 

  • Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705. https://doi.org/10.1111/mec.15657 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Angelino, D. et al. Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front. Plant Sci. 6, 831. https://doi.org/10.3389/fpls.2015.00831 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liou, C. S. et al. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180, 717–729. https://doi.org/10.1016/j.cell.2020.01.023 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. J. et al. Dietary broccoli alters rat cecal microbiota to improve glucoraphanin hydrolysis to bioactive isothiocyanates. Nutrients 9, 262. https://doi.org/10.3390/nu9030262 (2017).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Sikorska-Zimny, K. & Beneduce, L. The metabolism of glucosinolates by gut microbiota. Nutrients 13, 2750. https://doi.org/10.3390/nu13082750 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müller, C., Vogel, H. & Heckel, D. G. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol. Ecol. 26, 6370–6383. https://doi.org/10.1111/mec.14349 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rueckert, S., Betts, E. L. & Tsaousis, A. D. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 35, 687–694. https://doi.org/10.1016/j.pt.2019.06.013 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kühnle, A. & Müller, C. Responses of an oligophagous beetle species to rearing for several generations on alternative host plant species. Ecol. Entomol. 36, 125–134. https://doi.org/10.1111/j.1365-2311.2010.01256.x (2011).

    Article 

    Google Scholar 

  • Sporer, T. et al. Hijacking the mustard-oil bomb: How a glucosinolate-sequestering flea beetle copes with plant myrosinases. Front. Plant Sci. 12, 645030. https://doi.org/10.3389/fpls.2021.645030 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kallenbach, M. et al. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 78, 1060–1072. https://doi.org/10.1111/tpj.12523 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kallenbach, M., Veit, D., Eilers, E. J. & Schuman, M. C. Application of silicone tubing for robust, simple, high-throughput, and time-resolved analysis of plant volatiles in field experiments. Bioprotocol 5, e1391 (2015).

    Google Scholar 

  • Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminf. 8, 3. https://doi.org/10.1186/s13321-016-0115-9 (2016).

    CAS 
    Article 

    Google Scholar 

  • Kováts, E. Characterization of organic compounds by gas chromatography. Part 1. Retention indices of aliphatic halides, alcohols, aldehydes and ketones. Helv. Chim. Acta 41, 1915–1932, doi:https://doi.org/10.1002/hlca.19580410703 (1958).

  • El-Sayed, A. M. The Pherobase: Database of Pheromones and Semiochemicals. (2012).

  • McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem. Toxicol. 26, 59–70. https://doi.org/10.1016/0278-6915(88)90042-7 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Weber, G., Oswald, S. & Zöllner, U. Suitability of rapae cultivars with a different glucosinolate content for Brevicoryne brassicae (L) and Myzus persicae (Sulzer) (Hemiptera, Aphididae). Z. Pflanzenk. Pflanzenschutz 93, 113–124 (1986).

    CAS 

    Google Scholar 

  • Wadleigh, R. W. & Yu, S. J. Detoxification of isothiocynante allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14, 1279–1288. https://doi.org/10.1007/bf01019352 (1988).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Francis, F., Lognay, G., Wathelet, J. P. & Haubruge, E. Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J. Chem. Ecol. 27, 243–256. https://doi.org/10.1023/A:1005672220342 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aliabadi, A., Renwick, J. A. A. & Whitman, D. W. Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J. Chem. Ecol. 28, 1749–1762. https://doi.org/10.1023/a:1020505016637 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bridges, M. et al. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. R. Soc. B-Biol. Sci. 269, 187–191. https://doi.org/10.1098/rspb.2001.1861 (2002).

    CAS 
    Article 

    Google Scholar 

  • Müller, C., Agerbirk, N. & Olsen, C. E. Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13, 47–54, doi: https://doi.org/10.1007/s000490300005 (2003).

  • Francis, F., Vanhaelen, N. & Haubruge, E. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 58, 166–174. https://doi.org/10.1002/arch.20049 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Müller, C. & Wittstock, U. Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem. Mol. Biol. 35, 1189–1198. https://doi.org/10.1016/j.ibmb.2005.06.001 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Agerbirk, N., Müller, C., Olsen, C. E. & Chew, F. S. A common pathway for metabolism of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem. Syst. Ecol. 34, 189–198. https://doi.org/10.1016/j.bse.2005.09.005 (2006).

    CAS 
    Article 

    Google Scholar 

  • Vergara, F. et al. Glycine conjugates in a lepidopteran insect herbivore: the metabolism of benzylglucosinolate in the cabbage white butterfly Pieris rapae. ChemBioChem 7, 1982–1989. https://doi.org/10.1002/cbic.200600280 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Agerbirk, N., Olsen, C. E., Topbjerg, H. B. & Sørensen, J. C. Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae: Substrate specificity and effects of genetic modification and plant nitrile hydratase. Insect Biochem. Mol. Biol. 37, 1119–1130. https://doi.org/10.1016/j.ibmb.2007.06.009 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kazana, E. et al. The cabbage aphid: a walking mustard oil bomb. Proc. R. Soc. B-Biol. Sci. 274, 2271–2277 (2007).

    CAS 
    Article 

    Google Scholar 

  • Agerbirk, N., Olsen, C. E., Poulsen, E., Jacobsen, N. & Hansen, P. R. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation. Insect Biochem. Mol. Biol. 40, 126–137. https://doi.org/10.1016/j.ibmb.2010.01.003 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Opitz, S. E. W., Jensen, S. R. & Muller, C. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J. Chem. Ecol. 36, 148–157. https://doi.org/10.1007/s10886-010-9740-3 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Opitz, S. E. W., Mix, A., Winde, I. B. & Müller, C. Desulfation followed by sulfation: metabolism of benzylglucosinolate in Athalia rosae (Hymenoptera: Tenthredinidae). ChemBioChem 12, 1252–1257. https://doi.org/10.1002/cbic.201100053 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Elbaz, M. et al. Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Mol. Ecol. 21, 4533–4546. https://doi.org/10.1111/j.1365-294X.2012.05713.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Opitz, S. E. W. et al. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS ONE 7, e33649. https://doi.org/10.1371/journal.pone.0033649 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stauber, E. J. et al. Turning the “Mustard oil bomb” into a “Cyanide bomb”: aromatic glucosinolate metabolism in a specialist insect herbivore. PLoS ONE 7, e35545. https://doi.org/10.1371/journal.pone.0035545 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gloss, A. D. et al. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the Drosophilidae. Mol. Biol. Evol. 31, 2441–2456. https://doi.org/10.1093/molbev/msu201 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodey, N. A., Florance, H. V., Smirnoff, N. & Hodgson, D. J. Aphids pick their poison: selective sequestration of plant chemicals affects host plant use in a specialist herbivore. J. Chem. Ecol. 41, 956–964. https://doi.org/10.1007/s10886-015-0634-2 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jeschke, V. et al. How glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate metabolism. Front. Plant Sci. 8, doi:https://doi.org/10.3389/fpls.2017.01995 (2017).

  • Steiner, A. M., Busching, C., Vogel, H. & Wittstock, U. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci. Rep. 8, 10819. https://doi.org/10.1038/s41598-018-29148-5 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahn, S. J. et al. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Sci. Rep. 9, 15725. https://doi.org/10.1038/s41598-019-51749-x (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malka, O. et al. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 16, 1420–1426. https://doi.org/10.1038/s41589-020-00658-6 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sun, R. et al. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Mol. Ecol. 29, 4014–4031. https://doi.org/10.1111/mec.15613 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Manivannan, A. et al. Identification of a sulfatase that detoxifies glucosinolates in the phloem-feeding insect Bemisia tabaci and prefers indolic glucosinolates. Front. Plant Sci. 12, 671286. https://doi.org/10.3389/fpls.2021.671286 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Z. L. et al. Sugar transporters enable a leaf beetle to accumulate plant defense compounds. Nat. Commun. 12, 2658. https://doi.org/10.1038/s41467-021-22982-8 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Making hydrogen power a reality

    Tapping into the million-year energy source below our feet