in

Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand

[adace-ad id="91168"]
  • Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606. https://doi.org/10.1016/j.pt.2020.04.004 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Noel, A., Le Conte, Y. & Mondet, F. Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it?. Emerg. Top. Life Sci. 4, 45–57. https://doi.org/10.1042/ETLS20190125 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boncristiani, H. et al. World honey bee health: the global distribution of western honey bee (Apis mellifera L.) pests and pathogens. Bee World 98, 2–6 (2020).

    Article 

    Google Scholar 

  • Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. U.S.A. 116, 1792–1801. https://doi.org/10.1073/pnas.1818371116 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA 113, 3203–3208. https://doi.org/10.1073/pnas.1523515113 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mondet, F. et al. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 5, 10454. https://doi.org/10.1038/srep10454 (2015).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McMenamin, A. J. & Genersch, E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 8, 121–129. https://doi.org/10.1016/j.cois.2015.01.015 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).

    Article 
    PubMed Central 

    Google Scholar 

  • Levin, S. et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses 11, 94. https://doi.org/10.3390/v11020094 (2019).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Chen, G. et al. A new strain of virus discovered in China specific to the parasitic mite Varroa destructor poses a potential threat to honey bees. Viruses 13, 679. https://doi.org/10.3390/v13040679 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraberger, S. et al. Genome sequences of two single-stranded DNA viruses identified in Varroa destructor. Genome Announc. 6, e00107-00118. https://doi.org/10.1128/genomeA.00107-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haddad, N., Horth, L., Al-Shagour, B., Adjlane, N. & Loucif-Ayad, W. Next-generation sequence data demonstrate several pathogenic bee viruses in Middle East and African honey bee subspecies (Apis mellifera syriaca, Apis mellifera intermissa) as well as their cohabiting pathogenic mites (Varroa destructor). Virus Genes 54, 694–705. https://doi.org/10.1007/s11262-018-1593-9 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Remnant, E. J., Mather, N., Gillard, T. L., Yagound, B. & Beekman, M. Direct transmission by injection affects competition among RNA viruses in honeybees. Proc. Royal Soc. B 286, 20182452. https://doi.org/10.1098/rspb.2018.2452 (2019).

    CAS 
    Article 

    Google Scholar 

  • Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. 6, 49–69. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).

    CAS 
    Article 

    Google Scholar 

  • Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. Royal Soc. B 286, 20182499. https://doi.org/10.1098/rspb.2018.2499 (2019).

    CAS 
    Article 

    Google Scholar 

  • McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. Royal Soc. B https://doi.org/10.1098/rspb.2016.0811 (2016).

    Article 

    Google Scholar 

  • Grindrod, I., Kevill, J. L., Villalobos, E. M., Schroeder, D. C. & Ten Martin, S. J. years of Deformed wing virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is potentially being replaced by variants with a DWV-B coding sequence. Viruses 13, 969. https://doi.org/10.3390/v13060969 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kevill, J. L., Stainton, K. C., Schroeder, D. C. & Martin, S. J. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch. Virol. 166, 2693–2702. https://doi.org/10.1007/s00705-021-05162-3 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Natsopoulou, M. E. et al. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242. https://doi.org/10.1038/s41598-017-05596-3 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwasaki, J. M., Barratt, B. I., Lord, J. M., Mercer, A. R. & Dickinson, K. J. The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio 44, 694–704. https://doi.org/10.1007/s13280-015-0679-z (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solignac, M. et al. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc. Royal Soc. B 272, 411–419. https://doi.org/10.1098/rspb.2004.2853 (2005).

    Article 

    Google Scholar 

  • Hall, R. J. et al. Apicultural practice and disease prevalence in Apis mellifera, New Zealand: A longitudinal study. J. Apic. Res. 60, 644–658. https://doi.org/10.1080/00218839.2021.1936422 (2021).

    Article 

    Google Scholar 

  • Mondet, F., de Miranda, J. R., Kretzschmar, A., Le Conte, Y. & Mercer, A. R. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 10, e1004323 (2014).

    Article 

    Google Scholar 

  • McFadden, A. M. J. et al. Israeli acute paralysis virus not detected in Apis mellifera in New Zealand in a national survey. J. Apic. Res. 53, 520–527. https://doi.org/10.3896/ibra.1.53.5.03 (2015).

    Article 

    Google Scholar 

  • Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 358. https://doi.org/10.3390/v12030358 (2020).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Gruber, M. A. M. et al. Single-stranded RNA viruses infecting the invasive argentine ant Linepithema humile. Sci. Rep. 7, 3304. https://doi.org/10.1038/s41598-017-03508-z (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brenton-Rule, E. C. et al. The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biol. Invasions 20, 3445–3460. https://doi.org/10.1007/s10530-018-1786-0 (2018).

    Article 

    Google Scholar 

  • Lester, P. J., Buick, K. H., Baty, J. W., Felden, A. & Haywood, J. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Sci. Rep. 9, 5780. https://doi.org/10.1038/s41598-019-41843-5 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS ONE 10, e0121358. https://doi.org/10.1371/journal.pone.0121358 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levin, S., Sela, N. & Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 6, 37710. https://doi.org/10.1038/srep37710 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cornman, S. R. et al. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom. 11, 602. https://doi.org/10.1186/1471-2164-11-602 (2010).

    CAS 
    Article 

    Google Scholar 

  • Gauthier, L. et al. The Apis mellifera filamentous virus genome. Viruses 7, 3798–3815. https://doi.org/10.3390/v7072798 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giuffre, C., Lubkin, S. R. & Tarpy, D. R. Does viral load alter behavior of the bee parasite Varroa destructor?. PLoS ONE 14, e0217975. https://doi.org/10.1371/journal.pone.0217975 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Runckel, C. et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6, e20656. https://doi.org/10.1371/journal.pone.0020656 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Remnant, E. J. et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 91, e00158. https://doi.org/10.1128/JVI.00158-17 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navajas, M. et al. New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41, 181–193. https://doi.org/10.1051/apido/2009068 (2010).

    CAS 
    Article 

    Google Scholar 

  • Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. https://doi.org/10.1038/nmeth.3317 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom. 20, 275. https://doi.org/10.1186/s12864-019-5642-0 (2019).

    Article 

    Google Scholar 

  • Techer, M. A. et al. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun. Biol. 2, 357. https://doi.org/10.1038/s42003-019-0606-0 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using Diamond. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • National Center for Biotechnology Information (NCBI). Bethesda (MD), National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[cited 2017 Apr 06]. Available from: https://www.ncbi.nlm.nih.gov/.

  • Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).

    CAS 
    Article 

    Google Scholar 

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R: A language and environment for statistical computing v. 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • Oksanen, J. et al. vegan: community ecology package. (R package version 2.4–0. https://CRAN.R-project.org/package=vegan., 2016).

  • Li, D. et al. Molecular detection of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae): DNA barcoding and development of a real-time PCR assay. Sci. Rep. 8, 9623. https://doi.org/10.1038/s41598-018-27603-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, D. L. & Trueman, J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189. https://doi.org/10.1023/a:1006456720416 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bradford, E. L., Christie, C. R., Campbell, E. M. & Bowman, A. S. A real-time PCR method for quantification of the total and major variant strains of the Deformed wing virus. PLoS ONE 12, e0190017. https://doi.org/10.1371/journal.pone.0190017 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dynes, T. L. et al. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48, 93–101. https://doi.org/10.1007/s13592-016-0453-7 (2017).

    Article 

    Google Scholar 

  • Maggi, M. et al. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Exp. Appl. Acarol. 56, 309–318. https://doi.org/10.1007/s10493-012-9526-0 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hasegawa, N., Techer, M. & Mikheyev, A. S. A toolkit for studying Varroa genomics and transcriptomics: preservation, extraction, and sequencing library preparation. BMC Genom. 22, 54. https://doi.org/10.1186/s12864-020-07363-7 (2021).

    CAS 
    Article 

    Google Scholar 

  • Gisder, S. & Genersch, E. Direct evidence for infection of Varroa destructor mites with the bee-pathogenic Deformed wing virus variant B, but not variant A, via fluorescence in situ hybridization analysis. J. Virol. 95, e01786. https://doi.org/10.1128/JVI.01786-20 (2021).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Gisder, S., Aumeier, P. & Genersch, E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467. https://doi.org/10.1099/vir.0.005579-0 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yue, C. & Genersch, E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424. https://doi.org/10.1099/vir.0.81401-0 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Posada-Florez, F. et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci. Rep. 9, 12445. https://doi.org/10.1038/s41598-019-47447-3 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Budge, G. E. et al. Chronic bee paralysis as a serious emerging threat to honey bees. Nat. Commun. 11, 2164. https://doi.org/10.1038/s41467-020-15919-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graystock, P. et al. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215. https://doi.org/10.1111/1365-2664.12134 (2013).

    Article 

    Google Scholar 

  • Roberts, J. M. K., Simbiken, N., Dale, C., Armstrong, J. & Anderson, D. L. Tolerance of honey bees to Varroa mite in the absence of deformed wing virus. Viruses https://doi.org/10.3390/v12050575 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brettell, L. E. & Martin, S. J. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. 7, 45953. https://doi.org/10.1038/srep45953 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herrero, S. et al. Identification of new viral variants specific to the honey bee mite Varroa destructor. Exp. Appl. Acarol. 79, 157–168. https://doi.org/10.1007/s10493-019-00425-w (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Dobelmann, J. et al. Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218. https://doi.org/10.1111/oik.04117 (2017).

    CAS 
    Article 

    Google Scholar 

  • Shojaei, A., Nourian, A., Khanjani, M. & Mahmoodi, P. The first molecular characterization of Lake Sinai virus in honey bees (Apis mellifera) and Varroa destructor mites in Iran. J. Apic. Res. https://doi.org/10.1080/00218839.2021.1921467 (2021).

    Article 

    Google Scholar 

  • Hartmann, U., Forsgren, E., Charriere, J. D., Neumann, P. & Gauthier, L. Dynamics of Apis mellifera filamentous Virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7, 2654–2667. https://doi.org/10.3390/v7052654 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nanetti, A., Bortolotti, L. & Cilia, G. Pathogens spillover from honey bees to other arthropods. Pathogens 10, 1044. https://doi.org/10.3390/pathogens10081044 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Norton, A. M., Remnant, E. J., Buchmann, G. & Beekman, M. Accumulation and competition amongst Deformed wing virus genotypes in naive Australian honeybees provides insight into the increasing global prevalence of genotype B. Front. Microbiol. 11, 620. https://doi.org/10.3389/fmicb.2020.00620 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mordecai, G. J. et al. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 10, 1182–1191. https://doi.org/10.1038/ismej.2015.186 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    How the universe got its magnetic field