in

Winter wheat yield prediction using convolutional neural networks from environmental and phenological data

[adace-ad id="91168"]
  • Konduri, V. S., Vandal, T. J., Ganguly, S. & Ganguly, A. R. Data science for weather impacts on crop yield. Front. Sustain. Food Syst. 4, 52. https://doi.org/10.3389/fsufs.2020.00052 (2020).

    Article 

    Google Scholar 

  • Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., … & Wu, X. Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Eco. Ind., 101, 943953. https://doi.org/10.1016/J.ECOLIND.2019.01.059 (2019).

  • Moeinizade, S., Hu, G., Wang, L. & Schnable, P. S. Optimizing selection and mating in genomic selection with a look-ahead approach: An operations research framework. G3: Genes Genomes Genet. 9, 2123–2133. https://doi.org/10.1534/g3.118.200842 (2019).

    Article 

    Google Scholar 

  • Basso, B. & Liu, L. Chapter four: Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy Vol. 154 (ed. Sparks, D. L.) 201–255. https://doi.org/10.1016/bs.agron.2018.11.002 (2019)

  • Zarindast, A., & Wood, J. A Data-Driven Personalized Lighting Recommender System. Front. in Big Data, 4. (2021).

  • Shahhosseini, M., Hu, G., Khaki, S., & Archontoulis, S. V. Corn yield prediction with ensemble CNN-DNN. Front. Plant Sci., 12. (2021).

  • Haghighat, A. K., Ravichandra-Mouli, V., Chakraborty, P., Esfandiari, Y., Arabi, S., & Sharma, A. Applications of deep learning in intelligent transportation systems. J. Big Data Anal. Transp. 2, 115–145. https://doi.org/10.1007/s42421-020-00020-1 (2020).

  • Zarindast, A., Sharma, A., & Wood, J. Application of text mining in smart lighting literature-an analysis of existing literature and a research agenda. Int. J. Info. Mgmt. Data Insights, 1(2), 100032. (2021).

  • Chlingaryan, A., Sukkarieh, S. & Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012 (2018).

    Article 

    Google Scholar 

  • Zarindast, A., Poddar, S., & Sharma, A. A Data-Driven Method for Congestion Identification and Classification. J. Trans. Eng., Part A: Sys., 148(4), 04022012. (2022)

  • Shahhosseini, M., Martinez-Feria, R. A., Hu, G. & Archontoulis, S. V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14, 124026. https://doi.org/10.1088/1748-9326/ab5268 (2019).

    Article 
    ADS 

    Google Scholar 

  • Khaki, S. & Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci.https://doi.org/10.3389/fpls.2019.00621 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., & Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric. For. Meteorol. 285–286, 107922. https://doi.org/10.1016/j.agrformet.2020.107922 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., & Anderson, M. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 15, 064005. https://doi.org/10.1088/1748-9326/ab7df9 (2020).

    Article 
    ADS 

    Google Scholar 

  • Van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 105709. https://doi.org/10.1016/j.compag.2020.105709 (2020).

    Article 

    Google Scholar 

  • Khaki, S., Safaei, N., Pham, H. & Wang, L. WheatNet: A Lightweight Convolutional Neural Network for High-throughput Image-based Wheat Head Detection and Counting. arXiv:2103.09408 (2021).

  • Hassan, M. A., Khalil, A., Kaseb, S. & Kassem, M. A. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 203, 897–916. https://doi.org/10.1016/j.apenergy.2017.06.104 (2017).

    Article 

    Google Scholar 

  • Mishra, S. & Santra, D. M. A. G. H. Applications of machine learning techniques in agricultural crop production: A review paper. Indian J. Sci. Technol. 9, 1–14. https://doi.org/10.17485/ijst/2016/v9i38/95032 (2016).

    Article 

    Google Scholar 

  • Kamilaris, A. & Prenafeta-Boldú, F. Deep learning in agriculture: A survey. Comput. Electron. Agric.https://doi.org/10.1016/j.compag.2018.02.016 (2018).

    Article 

    Google Scholar 

  • Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D. Machine learning in agriculture: A review. Sensors 18, 2674. https://doi.org/10.3390/s18082674 (2018).

    Article 
    PubMed Central 
    ADS 

    Google Scholar 

  • Wang, Y., Zhang, Z., Feng, L., Du, Q. & Runge, T. Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States. Remote Sens. 12, 1232. https://doi.org/10.3390/rs12081232 (2020).

    Article 
    ADS 

    Google Scholar 

  • Cao, J., Zhang, Z., Luo, Y., Zhang, L., Zhang, J., Li, Z., & Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. Eur. J. Agron. 123, 126204. https://doi.org/10.1016/j.eja.2020.126204 (2021).

    Article 

    Google Scholar 

  • FAO. FAOSTAT (2021).

  • Zhao, G., Webber, H., Hoffmann, H., Wolf, J., Siebert, S., & Ewert, F. The implication of irrigation in climate change impact assessment: a European‐wide study. Glob. Chang. Biol. 21, 4031–4048. https://doi.org/10.1111/gcb.13008 (2015).

    Article 
    PubMed 
    ADS 

    Google Scholar 

  • EUROSTAT. Glossary: Nomenclature of territorial units for statistics (NUTS) (2019).

  • COPERNICUS. CORINE Land Cover (2006).

  • Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., & Ewert, F. No perfect storm for crop yield failure in Germany. Environ. Res. Lett. 15, 104012 (2020).

    Article 
    ADS 

    Google Scholar 

  • EUROSTAT. NUTS – Nomenclature of territorial units for statistics – Eurostat (2019).

  • Ämter, S. Regionaldatenbank Deutschland (2020).

  • DWD. Wetter und Klima – Deutscher Wetterdienst (2020).

  • Shook, J., Gangopadhyay, T., Wu, L., Ganapathysubramanian, B., Sarkar, S., & Singh, A. K. Crop yield prediction integrating genotype and weather variables using deep learning. PLOS ONE 16, e0252402. https://doi.org/10.1371/journal.pone.0252402 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nevavuori, P., Narra, N., Linna, P. & Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models. Remote Sens. 12, 4000. https://doi.org/10.3390/rs12234000 (2020).

    Article 
    ADS 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article 
    MATH 

    Google Scholar 

  • Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27. https://doi.org/10.1109/TIT.1967.1053964 (1967).

    Article 
    MATH 

    Google Scholar 

  • Hu, L.-Y., Huang, M.-W., Ke, S.-W. & Tsai, C.-F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 5, 1304. https://doi.org/10.1186/s40064-016-2941-7 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2013).

    Book 

    Google Scholar 

  • Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67. https://doi.org/10.1080/00401706.1970.10488634 (1970).

    Article 
    MATH 

    Google Scholar 

  • Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. Classification and Regression Trees 1st edn. (Chapman and Hall/CRC Press, 1984).

    MATH 

    Google Scholar 

  • Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297. https://doi.org/10.1007/BF00994018 (1995).

    Article 
    MATH 

    Google Scholar 

  • Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794) (2016).

  • Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Tao, F. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 12, 21. https://doi.org/10.3390/rs12010021 (2020).

    Article 
    ADS 

    Google Scholar 

  • Nigam, A., Garg, S., Agrawal, A. & Agrawal, P. Crop Yield Prediction Using Machine Learning Algorithms. 2019 Fifth International Conference on Image Information Processing (ICIIP) https://doi.org/10.1109/ICIIP47207.2019.8985951 (2019).

  • LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khaki, S., Pham, H., & Wang, L. Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning. Sci. Rep. 11(1), 1–14. (2021).

    Article 

    Google Scholar 

  • Khaki, S., Khalilzadeh, Z. & Wang, L. Predicting yield performance of parents in plant breeding: A neural collaborative filtering approach. PLoS ONE 15, e0233382. https://doi.org/10.1371/journal.pone.0233382 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamorski, K., Pachepsky, Y., Sławiński, C. & Walczak, R. T. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 72, 1243–1247. https://doi.org/10.2136/sssaj2007.0280N (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Merdun, H., Çınar, C., Meral, R. & Apan, M. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 1–2, 108–116. https://doi.org/10.1016/j.still.2005.08.011 (2006).

    Article 

    Google Scholar 

  • Landeras, G., Ortiz-Barredo, A. & López, J. J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 95, 553–565. https://doi.org/10.1016/j.agwat.2007.12.011 (2008).

    Article 

    Google Scholar 

  • Yamaç, S. S. & Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875 (2020).

    Article 

    Google Scholar 

  • Obsie, E. Y., Qu, H. & Drummond, F. Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms. Comput. Electron. Agric. 178, 105778. https://doi.org/10.1016/j.compag.2020.105778 (2020).

    Article 

    Google Scholar 

  • Shapley, L. S. A Value for n-Person Games (Princeton University Press, 1953).

    MATH 

    Google Scholar 

  • Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., … & Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010. https://doi.org/10.1088/1748-9326/ab154b (2019).

    Article 
    ADS 

    Google Scholar 

  • Stokes, V. J., Morecroft, M. D. & Morison, J. I. L. Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agric. For. Meteorol. 139, 40–54. https://doi.org/10.1016/j.agrformet.2006.05.011 (2006).

    Article 
    ADS 

    Google Scholar 

  • Chen, X. & Chen, S. China feels the heat: Negative impacts of high temperatures on China’s rice sector. Aust. J. Agric. Resour. Econ. 62, 576–588. https://doi.org/10.1111/1467-8489.12267 (2018).

    Article 

    Google Scholar 

  • Tao, F., Xiao, D., Zhang, S., Zhang, Z. & Rötter, R. P. Wheat yield benefited from increases in minimum temperature in the Huang–Huai–Hai Plain of China in the past three decades. Agric. For. Meteorol. 239, 1–14. https://doi.org/10.1016/j.agrformet.2017.02.033 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zheng, C., Zhang, J., Chen, J., Chen, C., Tian, Y., Deng, A., … & Zhang, W. Nighttime warming increases winter-sown wheat yield across major Chinese cropping regions. Field Crops Res. 214, 202–210. https://doi.org/10.1016/j.fcr.2017.09.014 (2017).

    Article 
    ADS 

    Google Scholar 

  • Gibson, L. R. & Paulsen, G. M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 39, 1841–1846. https://doi.org/10.2135/cropsci1999.3961841x (1999).

    Article 

    Google Scholar 

  • Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2, 186–189. https://doi.org/10.1038/nclimate1356 (2012).

    Article 
    ADS 

    Google Scholar 

  • Tashiro, T. & Wardlaw, I. A comparison of the effect of high temperature on grain development in wheat and rice. Ann. Bot. 64, 59–65. https://doi.org/10.1093/oxfordjournals.aob.a087808 (1989).

    Article 

    Google Scholar 

  • Wollenweber, B., Porter, J. R. & Schellberg, J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 189, 142–150. https://doi.org/10.1046/j.1439-037X.2003.00025.x (2003).

    Article 

    Google Scholar 

  • Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., … & Kahiluoto, H. Sensitivity of European wheat to extreme weather. Field Crops Res., 222, 209–217. https://doi.org/10.1016/j.fcr.2017.11.008 (2018).

    Article 

    Google Scholar 

  • Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507. https://doi.org/10.1080/07352689.2011.615687 (2011).

    Article 

    Google Scholar 

  • Peichl, M., Thober, S., Meyer, V. & Samaniego, L. The effect of soil moisture anomalies on maize yield in Germany. Nat. Hazards Earth Syst. Sci. 18, 889–906. https://doi.org/10.5194/nhess-18-889-2018 (2018).

    Article 
    ADS 

    Google Scholar 

  • Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res., 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).

    Article 

    Google Scholar 

  • Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31, 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).

    Article 

    Google Scholar 

  • Gömann, H. Wetterextreme: mögliche Folgen für die Landwirtschaft in Deutschland (2018).

  • Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., & Friedler, S. Problems with Shapley-value-based explanations as feature importance measures. In International Conference on Machine Learning (pp. 5491–5500). PMLR. (2020).

  • Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. (2019).


  • Source: Ecology - nature.com

    Tuning in to invisible waves on the JET tokamak

    Using artificial intelligence to find anomalies hiding in massive datasets