in

Global analysis and prediction of fluoride in groundwater

[adace-ad id="91168"]
  • Ayoob, S. & Gupta, A. K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 36, 433–487 (2006).

    CAS 
    Article 

    Google Scholar 

  • Ali, S., Thakur, S. K., Sarkar, A. & Shekhar, S. Worldwide contamination of water by fluoride. Environ. Chem. Lett. 14, 291–315 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lacson, C. F. Z., Lu, M.-C. & Huang, Y.-H. Fluoride containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. J. Cleaner Prod. 280, 124236 (2020).

  • Handa, B. Geochemistry and genesis of fluoride‐containing ground waters in india. Groundwater 13, 275–281 (1975).

    CAS 
    Article 

    Google Scholar 

  • Hudak, P. F. Fluoride levels in Texas groundwater. J. Environ. Sci. Health Part A 34, 1659–1676 (1999).

    Article 

    Google Scholar 

  • Brunt, R., Vasak, L. & Griffioen, J. Fluoride in Groundwater: Probability of occurrence of excessive concentration on global scale. unigrac.org (2004).

  • Jacks, G., Bhattacharya, P., Chaudhary, V. & Singh, K. Controls on the genesis of some high-fluoride groundwaters in India. Appl. Geochem. 20, 221–228 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rao, N. S. High-fluoride groundwater. Environ. Monit. Assess. 176, 637–645 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Edmunds, W. M. & Smedley, P. L. Essentials of Medical Geology 311–336 (Springer, 2013).

  • Alarcón-Herrera, M. T. et al. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility, and remediation. J. Hazard. Mater. 262, 960–969 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Wen, D. et al. Arsenic, fluoride and iodine in groundwater of China. J. Geochem. Exploration 135, 1–21 (2013).

    CAS 
    Article 

    Google Scholar 

  • Malago, J., Makoba, E. & Muzuka, A. N. Fluoride levels in surface and groundwater in Africa: A review. Am. J. Water Sci. Eng. 3, 1–17 (2017).

    Article 

    Google Scholar 

  • Alarcón-Herrera, M. T. et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization. Sci. Total Environ. 698, 134168 (2020).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Islam, M. S. & Mostafa, M. Meta‐analysis and risk assessment of fluoride contamination in groundwater. Water Environ. Res. 93, 1194–1216 (2021).

  • Fawell, J., Bailey, K., Chilton, J., Dahi, E. & Magara, Y. Fluoride in Drinking-Water (IWA Publishing, 2006).

  • Maithani, P. et al. Anomalous fluoride in groundwater from western part of Sirohi district, Rajasthan and its crippling effects on human health. Curr. Sci. 74, 773–777 (1998).

  • Xiong, X. et al. Dose–effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environ. Res. 103, 112–116 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barbier, O., Arreola-Mendoza, L. & Del Razo, L. M. Molecular mechanisms of fluoride toxicity. Chem.-Biol. Interact. 188, 319–333 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jha, S. et al. Fluoride in groundwater: Toxicological exposure and remedies. J. Toxicol. Environ. Health, Part B 16, 52–66 (2013).

    CAS 
    Article 

    Google Scholar 

  • Yadav, K. K. et al. Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicol. Environ. Saf. 182, 109362 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aravinthasamy, P. et al. Fluoride contamination in groundwater of the Shanmuganadhi River basin (south India) and its association with other chemical constituents using geographical information system and multivariate statistics. Geochemistry 80, 125555 (2020).

    CAS 
    Article 

    Google Scholar 

  • Schlesinger, W. H., Klein, E. M. & Vengosh, A. Global biogeochemical cycle of fluorine. Glob. Biogeochem. Cycles 34, e2020GB006722 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • WHO. Guidelines for drinking-water quality. WHO Chron. 38, 104–108 (2011).

    Google Scholar 

  • WHO. Fluoride in Drinking-water: Background document for development of WHO Guidelines for Drinking-water Quality, Geneva (2004).

  • Reddy, K. N. Revised guidelines of National Water Quality Sub-Mission (Government of India, Ministry of Drinking Water and Sanitation, 2017).

  • U.S. EPA. Six-Year Review 3—Health Effects Assessment for Existing Chemical and Radionuclide National Primary Drinking Water Regulations—Summary Report (U.S. Environmental Protection Agency, 2016).

  • Vithanage, M. & Bhattacharya, P. Fluoride in the environment: Sources, distribution, and defluoridation. Environ. Chem. Lett. 13, 131–147 (2015).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y. et al. Genesis of geogenic contaminated groundwater: As, F and I. Crit. Rev. Environ. Sci. Technol. 51, 1–39 (2020).

  • He, X. et al. Groundwater arsenic and fluoride and associated arsenicosis and fluorosis in China: Occurrence, distribution, and management. Exposure Health 12, 1–14 (2020).

  • Guo, Q., Wang, Y., Ma, T. & Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Exploration 93, 1–12 (2007).

    CAS 
    Article 

    Google Scholar 

  • Saxena, V. & Ahmed, S. Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ. Geol. 43, 731–736 (2003).

    CAS 
    Article 

    Google Scholar 

  • Schafer, D. et al. Model-based analysis of reactive transport processes governing fluoride and phosphate release and attenuation during managed aquifer recharge. Environ. Sci. Technol. 54, 2800–2811 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johnston, R. B., Berg, M., Johnson, C. A., Tilley, E. & Hering, J. G. Water and sanitation in developing countries: Geochemical aspects of quality and treatment. Elements 7, 163–168 (2011).

    CAS 
    Article 

    Google Scholar 

  • Bretzler, A. & Johnson, C. A. The geogenic contamination handbook: Addressing arsenic and fluoride in drinking water. Appl. Geochem. 63, 642–646 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Lombard, M. A. et al. Machine learning models of arsenic in private wells throughout the conterminous United States as a tool for exposure assessment in human health studies. Environ. Sci. Technol. 55, 5012–5023 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mukherjee, A. et al. Occurrence, predictors, and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Sci. Total Environ. 759, 143511 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Podgorski, J. & Berg, M. Global threat of arsenic in groundwater. Science 368, 845–850 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Podgorski, J. E., Labhasetwar, P., Saha, D. & Berg, M. Prediction modeling and mapping of groundwater fluoride contamination throughout India. Environ. Sci. Technol. 52, 9889–9898 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Amini, M. et al. Statistical modeling of global geogenic fluoride contamination in groundwaters. Environ. Sci. Technol. 42, 3662–3668 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rosecrans, C. Z., Belitz, K., Ransom, K. M., Stackelberg, P. E. & McMahon, P. B. Predicting regional fluoride concentrations at public and domestic supply depths in basin-fill aquifers of the western United States using a random forest model. Sci. Total Environ. 806, 150960 (2022).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Jia, Y. et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review. Sci. Total Environ. 643, 967–993 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Podgorski, J. E. et al. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. https://doi.org/10.1126/sciadv.1700935 (2017).

  • Podgorski, J., Wu, R., Chakravorty, B. & Polya, D. A. Groundwater arsenic distribution in India by machine learning geospatial modeling. Int. J. Environ. Res. public health 17, 7119 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Ayotte, J. D., Medalie, L., Qi, S. L., Backer, L. C. & Nolan, B. T. Estimating the high-arsenic domestic-well population in the conterminous United States. Environ. Sci. Technol. 51, 12443–12454 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gizaw, B. The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system. J. Afr. Earth Sci. 22, 391–402 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Borgnino, L. et al. Mechanisms of fluoride release in sediments of Argentina’s central region. Sci. Total Environ. 443, 245–255 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McMahon, P. B., Brown, C. J., Johnson, T. D., Belitz, K. & Lindsey, B. D. Fluoride occurrence in United States groundwater. Sci. Total Environ. 732, 139217 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alcaine, A. A. et al. Hydrogeochemical controls on the mobility of arsenic, fluoride and other geogenic co-contaminants in the shallow aquifers of northeastern La Pampa Province in Argentina. Sci. Total Environ. 715, 136671 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Hossain, M. & Patra, P. K. Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ. Pollut. 258, 113646 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • JMP. Global data on Water Supply, Sanitation and Hygiene (WASH), https://washdata.org/data/household#!/ (2019).

  • Gao, J. (ed.) Global Population Projection Grids Based on Shared Socioeconomic Pathways (SSPs), Downscaled 1-km Grids, 2010-2100. NASA Socioeconomic Data and Applications Center (SEDAC) (2019).

  • Araya, D., Podgorski, J., Kumi, M., Mainoo, P. A. & Berg, M. Fluoride contamination of groundwater resources in Ghana: Country-wide hazard modeling and estimated population at risk. Water Res. 212, 118083 (2022).

  • Cao, H., Xie, X., Wang, Y. & Liu, H. Predicting geogenic groundwater fluoride contamination throughout China. J. Environ. Sci. 115, 140–148 (2022).

    Article 

    Google Scholar 

  • Bretzler, A. et al. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk. Sci. Total Environ. 584, 958–970 (2017).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Wu, R., Podgorski, J., Berg, M. & Polya, D. A. Geostatistical model of the spatial distribution of arsenic in groundwaters in Gujarat State, India. Environ. Geochem. Health 43, 2649–2664 (2020).

  • Craig, L., Lutz, A., Berry, K. A. & Yang, W. Recommendations for fluoride limits in drinking water based on estimated daily fluoride intake in the Upper East Region, Ghana. Sci. Total Environ. 532, 127–137 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ayoob, S., Gupta, A. & Bhat, V. T. A conceptual overview on sustainable technologies for the defluoridation of drinking water. Crit. Rev. Environ. Sci. Technol. 38, 401–470 (2008).

    CAS 
    Article 

    Google Scholar 

  • Scott, D. W. Sturges’ rule. Wiley Interdiscip. Rev.: Comput. Stat. 1, 303–306 (2009).

    Article 

    Google Scholar 

  • R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2014).

  • Wright, M. N. & Ziegler, A. ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software 77:1-17, https://arxiv.org/abs/1508.04409 (2015).

  • Diaz-Uriarte, R. & de Andrés, S. A. Variable selection from random forests: Application to gene expression data. https://arxiv.org/abs/q-bio/0503025 (2005).

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar 

  • Podgorski, J. & Berg, M. Podgorski_and_Berg_2022. ERIC/open https://doi.org/10.25678/0006GQ (2022).


  • Source: Resources - nature.com

    Risk assessment for the native anurans from an alien invasive species, American bullfrogs (Lithobates catesbeianus), in South Korea

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns