in

Opportunities to curb hydrological alterations via dam re-operation in the Mekong

[adace-ad id="91168"]
  • Junk, W. J. Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29, 414–435 (2002).

    Google Scholar 

  • Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Google Scholar 

  • Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    CAS 

    Google Scholar 

  • Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    CAS 

    Google Scholar 

  • Poff, N. L., Olden, J. D., Merritt, D. M. & Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl Acad. Sci. USA 104, 5732–5737 (2007).

    CAS 

    Google Scholar 

  • Junk, W. J., Bayley, P. B. & Sparks, R. E. et al. The flood pulse concept in river–floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).

    Google Scholar 

  • Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    CAS 

    Google Scholar 

  • McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    CAS 

    Google Scholar 

  • O’Connor, J. E., Duda, J. J. & Grant, G. E. 1,000 dams down and counting. Science 348, 496–497 (2015).

    Google Scholar 

  • Baumann, P. & Stevanella, G. Fish passage principles to be considered for medium and large dams: the case study of a fish passage concept for a hydroelectric power project on the Mekong mainstem in Laos. Ecol. Eng. 48, 79–85 (2012).

    Google Scholar 

  • Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    CAS 

    Google Scholar 

  • Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).

    CAS 

    Google Scholar 

  • Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biol. 55, 147–170 (2010).

    Google Scholar 

  • Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).

    Google Scholar 

  • Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).

    CAS 

    Google Scholar 

  • Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Google Scholar 

  • Jumani, S. et al. River fragmentation and flow alteration metrics: a review of methods and directions for future research. Environ. Res. Lett. 15, 123009 (2020).

    Google Scholar 

  • Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems? Front. Ecol. Environ. 12, 176–185 (2014).

    Google Scholar 

  • Opperman, J. J., Kendy, E. & Barrios, E. Securing environmental flows through system reoperation and management: lessons from case studies of implementation. Front. Environ. Sci. 7, 104 (2019).

    Google Scholar 

  • Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong basin. Science 358, eaao1053 (2017).

    Google Scholar 

  • Chen, W. & Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 8, 2158 (2017).

    Google Scholar 

  • Merme, V., Ahlers, R. & Gupta, J. Private equity, public affair: hydropower financing in the Mekong basin. Glob. Environ. Change 24, 20–29 (2014).

    Google Scholar 

  • Owusu, A., Mul, M., Van Der Zaag, P. & Slinger, J. May the odds be in your favor: why many attempts to reoperate dams for the environment stall. J. Water Resour. Plann. Manage. 148, 04022009 (2022).

    Google Scholar 

  • Hetch, J. S., Lacombe, G., Arias, M. E., Dang, T. D. & Piman, T. Hydropower dams of the Mekong River basin: a review of their hydrological impacts. J. Hydrol. 568, 285–300 (2019).

    Google Scholar 

  • Dang, H. et al. Hydrologic balance and inundation dynamics of Southeast Asia’s largest inland lake altered by hydropower dams in the Mekong River basin. Sci. Total Environ. 831, 154833 (2022).

    CAS 

    Google Scholar 

  • Latrubesse, E. M. et al. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018. Geomorphology 362, 107221 (2020).

    Google Scholar 

  • Chowdhury, A. K., Dang, T. D., Nguyen, H. T., Koh, R. & Galelli, S. The greater Mekong’s climate–water–energy nexus: how ENSO-triggered regional droughts affect power supply and CO2 emissions. Earth’s Future 9, e2020EF001814 (2021).

    Google Scholar 

  • Schmitt, R. J., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).

    CAS 

    Google Scholar 

  • Cochrane, T. A., Arias, M. E. & Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 18, 4529–4541 (2014).

    Google Scholar 

  • Dang, T. D., Cochrane, T. A., Arias, M. E., Van, P. D. T. & de Vries, T. T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Processes 30, 3824–3838 (2016).

    Google Scholar 

  • Räsänen, T. A. et al. Observed river discharge changes due to hydropower operations in the Upper Mekong basin. J. Hydrol. 545, 28–41 (2017).

    Google Scholar 

  • Halls, A. S. & Hortle, K. G. Flooding is a key driver of the Tonle Sap dai fishery in Cambodia. Sci. Rep. 11, 3806 (2021).

    CAS 

    Google Scholar 

  • Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).

    Google Scholar 

  • Arias, M. E., Piman, T., Lauri, H., Cochrane, T. A. & Kummu, M. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap floodplain in Cambodia. Hydrol. Earth Syst. Sci. 18, 5303–5315 (2014).

    Google Scholar 

  • Williams, J. M. Is three a crowd? River basin institutions and the governance of the Mekong River. Int. J. Water Resour. Dev. 37, 720–740 (2021).

    Google Scholar 

  • Tiezzi, S. Facing Mekong drought, China to release water from Yunnan Dam. The Diplomat https://thediplomat.com/2016/03/facing-mekong-drought-china-to-release-water-from-yunnan-dam/ (2016).

  • Johnson, K. China commits to share year-round water data with Mekong River Commission. Reuters https://www.reuters.com/article/us-mekong-river/china-commits-to-share-year-round-water-data-with-mekong-river-commission-idINKBN277135 (2020).

  • Ulibarri, N. Tracing process to performance of collaborative governance: a comparative case study of federal hydropower licensing. Policy Stud. J. 43, 283–308 (2015).

    Google Scholar 

  • Pool, T. et al. Fish assemblage composition within the floodplain habitat mosaic of a tropical lake (Tonle Sap, Cambodia). Freshwater Biol. 64, 2026–2036 (2019).

    Google Scholar 

  • Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318 (2006).

    Google Scholar 

  • Halls, A. S. & Welcomme, R. L. Dynamics of river fish populations in response to hydrological conditions: a simulation study. River Res. Appl. 20, 985–1000 (2004).

    Google Scholar 

  • Ngor, P. B. et al. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Sci. Rep. 8, 8947 (2018).

    Google Scholar 

  • Bonnema, M., Hossain, F., Nijssen, B. & Holtgrieve, G. Hydropower’s hidden transformation of rivers in the Mekong. Environ. Res. Lett. 15, 044017 (2020).

    Google Scholar 

  • Siala, K., Chowdhury, A. K., Dang, T. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    CAS 

    Google Scholar 

  • Hauer, C., Siviglia, A. & Zolezzi, G. Hydropeaking in regulated rivers—from process understanding to design of mitigation measures. Sci. Total Environ. 579, 22–26 (2017).

    CAS 

    Google Scholar 

  • Ahmed, T. et al. ASEAN power grid: a secure transmission infrastructure for clean and sustainable energy for South-East Asia. Renew. Sust. Energy Rev. 67, 1420–1435 (2017).

    Google Scholar 

  • Mohammed, I. N., Bolten, J. D., Souter, N. J., Shaad, K. & Vollmer, D. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 12, 796 (2022).

    CAS 

    Google Scholar 

  • Chowdhury, A. K. et al. Enabling a low-carbon electricity system for southern Africa. Joule 6, 1826–1844 (2022).

    Google Scholar 

  • Giuliani, M., Lamontagne, J., Reed, P. & Castelletti, A. A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world. Water Resour. Res. 57, e2021WR029927 (2021).

    Google Scholar 

  • Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590-591, 663–675 (2017).

    CAS 

    Google Scholar 

  • De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Google Scholar 

  • Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).

    Google Scholar 

  • Dang, T. D., Vu, D. T., Chowdhury, A. K. & Galelli, S. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model. Environ. Modell. Software 126, 104673 (2020).

    Google Scholar 

  • Chowdhury, A. K., Dang, T. D., Bagchi, A. & Galelli, S. Expected benefits of Laos’ hydropower development curbed by hydro-climatic variability and limited transmission capacity: opportunities to reform. J. Water Resour. Plann. Manage. 146, 05020019 (2020).

    Google Scholar 

  • Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Google Scholar 

  • Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R. & Kollat, J. B. Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv. Water Resour. 51, 438–456 (2013).

    Google Scholar 

  • Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River basin. Water Resour. Res. 56, e2019wr026449 (2020).

    Google Scholar 

  • Kabir, T., Pokhrel, Y. & Felfelani, F. On the precipitation-induced uncertainties in process-based hydrological modeling in the Mekong River basin. Water Resour. Res. 58, e2021WR030828 (2022).

    Google Scholar 

  • Piman, T., Cochrane, T., Arias, M., Green, A. & Dat, N. Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong basin. J. Water Resour. Plann. Manage. 139, 723–732 (2013).

    Google Scholar 

  • Chowdhury, A. K., Kern, J., Dang, T. D. & Galelli, S. PowNet: a network-constrained unit commitment/economic dispatch model for large-scale power systems analysis. J. Open Res. Software 8, 5 (2020).

    Google Scholar 


  • Source: Resources - nature.com

    Multiscale imaging on Saxifraga paniculata provides new insights into yttrium uptake by plants

    In nanotube science, is boron nitride the new carbon?