in

Waste-derived biochar for water pollution control and sustainable development

[adace-ad id="91168"]
  • Summary Progress Update 2021: SDG 6 — Water and Sanitation for All (United Nations, 2021).

  • Lu, L. et al. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1, 750–758 (2018).

    Article 

    Google Scholar 

  • Li, W.-W., Yu, H.-Q. & Rittmann, B. E. Chemistry: reuse water pollutants. Nature 528, 29–31 (2015).

    Article 

    Google Scholar 

  • McCarty, P. L., Bae, J. & Kim, J. Domestic wastewater treatment as a net energy producer — can this be achieved? Environ. Sci. Technol. 45, 7100–7106 (2011).

    Article 

    Google Scholar 

  • Transforming our World: The 2030 Agenda for Sustainable Development (UN Department of Economic and Social Affairs — Sustainable Development, 2015).

  • He, M. et al. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresour. Technol. 341, 125811 (2021). Evaluates the critical impact of pyrolysis temperature on physicochemical properties of pristine and activated biochar.

    Article 

    Google Scholar 

  • IPCC. Strengthening and implementing the global response. Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 4 (WMO, 2018).

  • Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems — a review. Mitig. Adapt. Strateg. Glob. Chang. 11, 403–427 (2006).

    Article 

    Google Scholar 

  • Wiedner, K. & Glaser, B. in Biochar for Environmental Management: Science, Technology and Implementation 2nd edition (eds Lehmann, J. & Joseph, S.) 14–32 (Routledge, 2015).

  • Wang, H. et al. Phosphorus recovery from the liquid phase of anaerobic digestate using biochar derived from iron-rich sludge: a potential phosphorus fertilizer. Water Res. 174, 115629 (2020).

    Article 

    Google Scholar 

  • Chen, S. S. et al. Designing sustainable drainage systems in subtropical cities: challenges and opportunities. J. Clean. Prod. 280, 124418 (2021).

    Article 

    Google Scholar 

  • Shaheen, S. M. et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review. Int. Mater. Rev. 64, 216–247 (2019).

    Article 

    Google Scholar 

  • Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).

    Article 

    Google Scholar 

  • Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021). Highlights that biochar is a carbon-negative material for environmental and energy applications.

    Article 

    Google Scholar 

  • Euronews.green. How is the €3 billion biochar industry transforming green energy in Sweden? https://www.euronews.com/green/2021/06/14/how-is-the-3-billion-biochar-industry-transforming-green-energy-sweden (2021).

  • Inkwoodresearch. Global biochar market forecast 2020–2028. https://www.inkwoodresearch.com/reports/global-biochar-market/# (2021).

  • State of the Biochar Industry 2015 (International Biochar Initiative (IBI), 2015).

  • Kumar, M. et al. Critical review on biochar-supported catalysts for pollutant degradation and sustainable biorefinery. Adv. Sustain. Syst. 4, 1900149 (2020).

    Article 

    Google Scholar 

  • Godlewska, P., Ok, Y. S. & Oleszczuk, P. The dark side of black gold: ecotoxicological aspects of biochar and biochar-amended soils. J. Hazard. Mater. 403, 123833 (2021). Reviews the potential risks of biochar application, which need further investigation.

    Article 

    Google Scholar 

  • Li, H. B. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017).

    Article 

    Google Scholar 

  • Lee, J., Kim, K. H. & Kwon, E. E. Biochar as a catalyst. Renew. Sust. Energ. Rev. 77, 70–79 (2017).

    Article 

    Google Scholar 

  • Xiao, X., Chen, B. L., Chen, Z. M., Zhu, L. Z. & Schnoor, J. L. Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ. Sci. Technol. 52, 5027–5047 (2018). Reviews how the transformation of organic and inorganic phases with increasing temperature determines the properties of biochar and its potential applications.

    Article 

    Google Scholar 

  • Dai, Y. J., Zhang, N. X., Xing, C. M., Cui, Q. X. & Sun, Q. Y. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223, 12–27 (2019).

    Article 

    Google Scholar 

  • Wang, J. L. & Wang, S. Z. Preparation, modification and environmental application of biochar: a review. J. Clean. Prod. 227, 1002–1022 (2019).

    Article 

    Google Scholar 

  • Zhao, Y., Yuan, X., Li, X., Jiang, L. & Wang, H. Burgeoning prospects of biochar and its composite in persulfate-advanced oxidation process. J. Hazard. Mater. 409, 124893 (2021).

    Article 

    Google Scholar 

  • Ren, S. et al. Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environ. Sci. Technol. 54, 5755–5766 (2020).

    Article 

    Google Scholar 

  • Wu, J., Lu, T., Bi, J., Yuan, H. & Chen, Y. A novel sewage sludge biochar and ferrate synergetic conditioning for enhancing sludge dewaterability. Chemosphere 237, 124339 (2019).

    Article 

    Google Scholar 

  • Whitman, T. & Lehmann, J. Biochar — one way forward for soil carbon in offset mechanisms in Africa? Environ. Sci. Policy 12, 1024–1027 (2009).

    Article 

    Google Scholar 

  • Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).

    Article 

    Google Scholar 

  • Chen, W., Meng, J., Han, X., Lan, Y. & Zhang, W. Past, present, and future of biochar. Biochar 1, 75–87 (2019).

    Article 

    Google Scholar 

  • Kwak, J.-H. et al. Biochar properties and lead(ii) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere 231, 393–404 (2019).

    Article 

    Google Scholar 

  • Dutta, S., He, M., Xiong, X. & Tsang, D. C. W. Sustainable management and recycling of food waste anaerobic digestate: a review. Bioresour. Technol. 341, 125915 (2021).

    Article 

    Google Scholar 

  • Xiao, X. & Chen, B. A direct observation of the fine aromatic clusters and molecular structures of biochars. Environ. Sci. Technol. 51, 5473–5482 (2017).

    Article 

    Google Scholar 

  • Li, S., Harris, S., Anandhi, A. & Chen, G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: a review and data syntheses. J. Clean. Prod. 215, 890–902 (2019).

    Article 

    Google Scholar 

  • Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J. & Tchobanoglous, G. MWH’s Water Treatment: Principles and Design 3rd edition (Wiley, 2012).

  • Enaime, G., Bacaoui, A., Yaacoubi, A. & Luebken, M. Biochar for wastewater treatment — conversion technologies and applications. Appl. Sci. 10, 3492 (2020).

    Article 

    Google Scholar 

  • Thompson, K. A. et al. Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ. Sci. Technol. 50, 11253–11262 (2016).

    Article 

    Google Scholar 

  • Cheng, N. et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: a review. Environ. Pollut. 273, 116448 (2021).

    Article 

    Google Scholar 

  • Huggins, T. M., Haeger, A., Biffinger, J. C. & Ren, Z. J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Res. 94, 225–232 (2016).

    Article 

    Google Scholar 

  • Activated Carbon Market by Type (Powdered, Granular, Others (Pelletized, Bead)), Application (Liquid Phase (Water Treatment, Foods & Beverages, Pharmaceutical & Medical), Gaseous Phase (Industrial, Automotive)), Region — Global Forecast to 2021 (MarketsAndMarkets, 2017).

  • Chen, Z., Zhang, W., Wang, D., Ma, T. & Bai, R. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: kinetics of enzymatic reaction and re-flocculation morphology. Water Res. 83, 367–376 (2015).

    Article 

    Google Scholar 

  • Shewa, W. A. & Dagnew, M. Revisiting chemically enhanced primary treatment of wastewater: a review. Sustainability 12, 5928 (2020).

    Article 

    Google Scholar 

  • Tao, S. et al. Enhanced sludge dewaterability with sludge-derived biochar activating hydrogen peroxide: synergism of Fe and Al elements in biochar. Water Res. 182, 115927 (2020).

    Article 

    Google Scholar 

  • Yang, X. et al. Enhanced sludge dewaterability by a novel MnFe2O4-biochar activated peroxymonosulfate process combined with tannic acid. Chem. Eng. J. 429, 132280 (2022).

    Article 

    Google Scholar 

  • Wu, Y. et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride. Bioresour. Technol. 205, 258–263 (2016).

    Article 

    Google Scholar 

  • Wu, Y. et al. Combined sludge conditioning of micro-disintegration, floc reconstruction and skeleton building (KMnO4/FeCl3/biochar) for enhancement of waste activated sludge dewaterability. J. Taiwan. Inst. Chem. Eng. 74, 121–128 (2017).

    Article 

    Google Scholar 

  • Hu, P. et al. The influence of hydrophobicity on sludge dewatering associated with cationic starch-based flocculants. J. Environ. Manage. 296, 113218 (2021).

    Article 

    Google Scholar 

  • Useviciute, L. & Baltrenaite, E. Methods for determining lignocellulosic biochar wettability. Waste Biomass Valoriz. 11, 4457–4468 (2019).

    Article 

    Google Scholar 

  • Li, H. et al. Enhanced sludge dewaterability by Fe-rich biochar activating hydrogen peroxide: co-hydrothermal red mud and reed straw. J. Environ. Manage. 296, 113239 (2021).

    Article 

    Google Scholar 

  • Liang, J., Luo, L., Li, D., Wang, H. & Wong, J. W. C. Conductive materials supplement alters digestate dewaterability during anaerobic co-digestion of food waste and sewage sludge and promotes follow-up indigenous peroxides activation. Chem. Eng. J. 431, 133875 (2021).

    Article 

    Google Scholar 

  • Wang, C. et al. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresour. Technol. 268, 28–35 (2018).

    Article 

    Google Scholar 

  • Zhao, Z., Li, Y., Quan, X. & Zhang, Y. Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Res. 115, 266–277 (2017).

    Article 

    Google Scholar 

  • Fagbohungbe, M. O. et al. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manage. 61, 236–249 (2017).

    Article 

    Google Scholar 

  • van Dijk, E. J. H., Pronk, M. & van Loosdrecht, M. C. M. A settling model for full-scale aerobic granular sludge. Water Res. 186, 116135 (2020).

    Article 

    Google Scholar 

  • de Kreuk, M. K., Kishida, N. & van Loosdrecht, M. C. M. Aerobic granular sludge — state of the art. Water Sci. Technol. 55, 75–81 (2007).

    Article 

    Google Scholar 

  • Wang, X. et al. Rapid aerobic granulation using biochar for the treatment of petroleum refinery wastewater. Pet. Sci. 17, 1411–1421 (2020).

    Article 

    Google Scholar 

  • Ming, J. et al. Bioreactor performance using biochar and its effect on aerobic granulation. Bioresour. Technol. 300, 122620 (2020).

    Article 

    Google Scholar 

  • Sohn, W. et al. A review on membrane fouling control in anaerobic membrane bioreactors by adding performance enhancers. J. Water Process. Eng. 40, 101867 (2021).

    Article 

    Google Scholar 

  • Wang, Z., Wu, Z. & Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 43, 2504–2512 (2009).

    Article 

    Google Scholar 

  • Sima, X.-F. et al. Robust biochar-assisted alleviation of membrane fouling in MBRs by indirect mechanism. Sep. Purif. Technol. 184, 195–204 (2017).

    Article 

    Google Scholar 

  • Shimabuku, K. K. et al. Biochar sorbents for sulfamethoxazole removal from surface water, stormwater, and wastewater effluent. Water Res. 96, 236–245 (2016).

    Article 

    Google Scholar 

  • Suresh Kumar, P., Korving, L., Keesman, K. J., van Loosdrecht, M. C. M. & Witkamp, G.-J. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chem. Eng. J. 358, 160–169 (2019).

    Article 

    Google Scholar 

  • Zhang, M. et al. Formation of disinfection byproducts as affected by biochar during water treatment. Chemosphere 233, 190–197 (2019).

    Article 

    Google Scholar 

  • Kwarciak-Kozłowska, A. in Industrial and Municipal Sludge (eds Narasimha Vara Prasad, M. et al.) 337–360 (Butterworth-Heinemann, 2019).

  • Gopinath, A. et al. Conversion of sewage sludge into biochar: a potential resource in water and wastewater treatment. Environ. Res. 194, 110656 (2021).

    Article 

    Google Scholar 

  • Chen, Y.-d et al. Production, properties, and catalytic applications of sludge derived biochar for environmental remediation. Water Res. 187, 116390 (2020).

    Article 

    Google Scholar 

  • Yu, J. et al. Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chem. Eng. J. 364, 146–159 (2019).

    Article 

    Google Scholar 

  • Wan, Z. et al. Critical impact of nitrogen vacancies in nonradical carbocatalysis on nitrogen-doped graphitic biochar. Environ. Sci. Technol. 55, 7004–7014 (2021).

    Article 

    Google Scholar 

  • Yan, L. et al. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 297, 122381 (2020).

    Article 

    Google Scholar 

  • Ding, X., Chen, H., Yang, Q., Wei, J. & Wei, D. Effect of sludge property on the synthesis, characterization and sorption performance of sludge-based biochar. Bioresour. Technol. Rep. 7, 100204 (2019).

    Article 

    Google Scholar 

  • Barbusiński, K., Parzentna-Gabor, A. & Kasperczyk, D. Removal of odors (mainly H2S and NH3) using biological treatment methods. Clean. Technol. 3, 138–155 (2021).

    Article 

    Google Scholar 

  • Talaiekhozani, A., Bagheri, M., Goli, A. & Talaei Khoozani, M. R. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manage. 170, 186–206 (2016).

    Article 

    Google Scholar 

  • Hwang, O. et al. Efficacy of different biochars in removing odorous volatile organic compounds (VOCs) emitted from swine manure. ACS Sustain. Chem. Eng. 6, 14239–14247 (2018).

    Article 

    Google Scholar 

  • Choudhury, A. & Lansing, S. Biochar addition with Fe impregnation to reduce H2S production from anaerobic digestion. Bioresour. Technol. 306, 123121 (2020).

    Article 

    Google Scholar 

  • Hao, X. et al. Environmental impacts of resource recovery from wastewater treatment plants. Water Res. 160, 268–277 (2019).

    Article 

    Google Scholar 

  • Fang, L. L., Valverde-Pérez, B., Damgaard, A., Plósz, B. G. & Rygaard, M. Life cycle assessment as development and decision support tool for wastewater resource recovery technology. Water Res. 88, 538–549 (2016).

    Article 

    Google Scholar 

  • Zheng, Y. et al. Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chem. Eng. J. 362, 460–468 (2019).

    Article 

    Google Scholar 

  • He, M. et al. A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. J. Hazard. Mater. 414, 125378 (2021).

    Article 

    Google Scholar 

  • Yang, F. et al. Metal chloride-loaded biochar for phosphorus recovery: noteworthy roles of inherent minerals in precursor. Chemosphere 266, 128991 (2021).

    Article 

    Google Scholar 

  • Zheng, M., Xie, T., Li, J., Xu, K. & Wang, C. Biochar as a carrier of struvite precipitation for nitrogen and phosphorus recovery from urine. Int. J. Environ. Eng. 144, 4018101 (2018).

    Google Scholar 

  • Medeiros, D. C. C. d. S. et al. Pristine and engineered biochar for the removal of contaminants co-existing in several types of industrial wastewaters: a critical review. Sci. Total Environ. 809, 151120 (2021).

    Article 

    Google Scholar 

  • Mohan, D., Sarswat, A., Ok, Y. S. & Pittman, C. U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent — a critical review. Bioresour. Technol. 160, 191–202 (2014).

    Article 

    Google Scholar 

  • Ahmad, Z. et al. Removal of Cu(ii), Cd(ii) and Pb(ii) ions from aqueous solutions by biochars derived from potassium-rich biomass. J. Clean. Prod. 180, 437–449 (2018).

    Article 

    Google Scholar 

  • Xu, Z., Xu, X., Zhang, Y., Yu, Y. & Cao, X. Pyrolysis-temperature depended electron donating and mediating mechanisms of biochar for Cr(vi) reduction. J. Hazard. Mater. 388, 121794 (2019).

    Article 

    Google Scholar 

  • Heo, J. et al. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 281, 179–187 (2019).

    Article 

    Google Scholar 

  • Choudhary, M., Kumar, R. & Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+ from water. J. Hazard. Mater. 392, 122441 (2020).

    Article 

    Google Scholar 

  • Tao, Y. et al. Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32. Sci. Total. Environ. 682, 59–69 (2019).

    Article 

    Google Scholar 

  • Xu, X. Y. et al. Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20, 358–368 (2013).

    Article 

    Google Scholar 

  • Xu, Z., Xu, X., Tsang, D. C. W. & Cao, X. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils. Environ. Pollut. 242, 1362–1370 (2018).

    Article 

    Google Scholar 

  • Xu, X. Y., Cao, X. D. & Zhao, L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92, 955–961 (2013).

    Article 

    Google Scholar 

  • Pei, L. et al. Further reuse of phosphorus-laden biochar for lead sorption from aqueous solution: isotherm, kinetics, and mechanism. Sci. Total. Environ. 792, 148550 (2021).

    Article 

    Google Scholar 

  • Klüpfel, L., Keiluweit, M., Kleber, M. & Sander, M. Redox properties of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 48, 5601–5611 (2014). Reveals considerable redox reactivity on biochar due to its surface functionality.

    Article 

    Google Scholar 

  • Xu, Z. et al. Direct and indirect electron transfer routes of chromium(vi) reduction with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon. Environ. Sci. Technol. 56, 1724–1735 (2022).

    Article 

    Google Scholar 

  • Xu, Z. et al. Electroactive Fe-biochar for redox-related remediation of arsenic and chromium: distinct redox nature with varying iron/carbon speciation. J. Hazard. Mater. 430, 128479 (2022).

    Article 

    Google Scholar 

  • Zhong, D. et al. pH dependence of arsenic oxidation by rice-husk-derived biochar: roles of redox-active moieties. Environ. Sci. Technol. 53, 9034–9044 (2019).

    Article 

    Google Scholar 

  • Liu, J. et al. Highly efficient removal of thallium in wastewater by MnFe2O4–biochar composite. J. Hazard. Mater. 401, 123311 (2021).

    Article 

    Google Scholar 

  • Ruan, X. et al. Formation, characteristics, and applications of environmentally persistent free radicals in biochars: a review. Bioresour. Technol. 281, 457–468 (2019).

    Article 

    Google Scholar 

  • Liang, J. et al. Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: roles of radicals in solution or solid phase. Chem. Eng. J. 375, 121908 (2019).

    Article 

    Google Scholar 

  • Sun, T. et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 8, 14873 (2017). Emphasizes the importance of graphitic structures for the electron transfer capacity of high-temperature biochar.

    Article 

    Google Scholar 

  • Wan, Z. et al. A sustainable biochar catalyst synergized with copper heteroatoms and CO2 for singlet oxygenation and electron transfer routes. Green Chem. 21, 4800–4814 (2019).

    Article 

    Google Scholar 

  • Dou, J. et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process. Appl. Catal. B 301, 120832 (2022).

    Article 

    Google Scholar 

  • Liu, W.-J., Jiang, H. & Yu, H.-Q. Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci. 12, 1751–1779 (2019).

    Article 

    Google Scholar 

  • Yao, F. et al. Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. J. Hazard. Mater. 386, 121651 (2020).

    Article 

    Google Scholar 

  • Yao, F. et al. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. J. Hazard. Mater. 323, 602–610 (2017).

    Article 

    Google Scholar 

  • Zhao, Z. et al. Enhanced removal of Cu-EDTA in a three-dimensional electrolysis system with highly graphitic activated biochar produced via acidic and K2FeO4 treatment. Chem. Eng. J. 430, 132661 (2022).

    Article 

    Google Scholar 

  • Zhang, T. et al. Ti–Sn–Ce/bamboo biochar particle electrodes for enhanced electrocatalytic treatment of coking wastewater in a three-dimensional electrochemical reaction system. J. Clean. Prod. 258, 120273 (2020).

    Article 

    Google Scholar 

  • Sun, C. et al. Biochar cathode: reinforcing electro-Fenton pathway against four-electron reduction by controlled carbonization and surface chemistry. Sci. Total Environ. 754, 142136 (2021).

    Article 

    Google Scholar 

  • Liu, W.-J., Jiang, H. & Yu, H.-Q. Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015). Reviews how biochar-based functional materials can be used for various sustainable applications.

    Article 

    Google Scholar 

  • Ng, Y. H., Ikeda, S., Matsumura, M. & Amal, R. A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy Environ. Sci. 5, 9307–9318 (2012).

    Article 

    Google Scholar 

  • Wang, Z., Murugananthan, M. & Zhang, Y. Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(iii) and chromium(vi) in acid aqueous solution. Appl. Catal. B 248, 349–356 (2019).

    Article 

    Google Scholar 

  • Lisowski, P. et al. Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase. ACS Sustain. Chem. Eng. 5, 6274–6287 (2017).

    Article 

    Google Scholar 

  • Zhai, Y. et al. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J. Colloid Interface Sci. 560, 111–121 (2020).

    Article 

    Google Scholar 

  • Tang, R. et al. π–π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. J. Hazard. Mater. 423, 126944 (2022).

    Article 

    Google Scholar 

  • Mian, M. M. & Liu, G. Recent progress in biochar-supported photocatalysts: synthesis, role of biochar, and applications. RSC Adv. 8, 14237–14248 (2018).

    Article 

    Google Scholar 

  • Colmenares, J. C., Varma, R. S. & Lisowski, P. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources. Green. Chem. 18, 5736–5750 (2016).

    Article 

    Google Scholar 

  • Shi, J. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113, 2139–2181 (2013).

    Article 

    Google Scholar 

  • Wang, W., Serp, P., Kalck, P. & Faria, J. L. Visible light photodegradation of phenol on MWNT–TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A Chem. 235, 194–199 (2005).

    Article 

    Google Scholar 

  • Matos, J., Hofman, M. & Pietrzak, R. Synergy effect in the photocatalytic degradation of methylene blue on a suspended mixture of TiO2 and N-containing carbons. Carbon 54, 460–471 (2013).

    Article 

    Google Scholar 

  • Wan, D. et al. Photogeneration of reactive species from biochar-derived dissolved black carbon for the degradation of amine and phenolic pollutants. Environ. Sci. Technol. 55, 8866–8876 (2021).

    Article 

    Google Scholar 

  • Fu, H. et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation. Environ. Sci. Technol. 50, 1218–1226 (2016).

    Article 

    Google Scholar 

  • Yang, F. et al. Effects of biochar-dissolved organic matter on the photodegradation of sulfamethoxazole and chloramphenicol in biochar solutions as revealed by oxygen reduction performances and free radicals. Sci. Total. Environ. 781, 146807 (2021).

    Article 

    Google Scholar 

  • Farhadi, S., Aminzadeh, B., Torabian, A., Khatibikamal, V. & Alizadeh Fard, M. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes. J. Hazard. Mater. 219-220, 35–42 (2012).

    Article 

    Google Scholar 

  • Zaied, B. K. et al. A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Sci. Total. Environ. 726, 138095 (2020).

    Article 

    Google Scholar 

  • An, X. et al. Integrated co-pyrolysis and coating for the synthesis of a new coated biochar-based fertilizer with enhanced slow-release performance. J. Clean. Prod. 283, 124642 (2021).

    Article 

    Google Scholar 

  • Krasucka, P. et al. Engineered biochar — a sustainable solution for the removal of antibiotics from water. Chem. Eng. J. 405, 126926 (2021).

    Article 

    Google Scholar 

  • Zhang, Y. et al. Regulation of biochar mediated catalytic degradation of quinolone antibiotics: Important role of environmentally persistent free radicals. Bioresour. Technol. 326, 124780 (2021).

    Article 

    Google Scholar 

  • Nidheesh, P. V. et al. Potential role of biochar in advanced oxidation processes: a sustainable approach. Chem. Eng. J. 405, 126582 (2021).

    Article 

    Google Scholar 

  • Hynes, N. R. J. et al. Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector -a comprehensive review. J. Clean. Prod. 272, 122636 (2020).

    Article 

    Google Scholar 

  • Yu, K. L. et al. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling. Environ. Pollut. 272, 115986 (2021).

    Article 

    Google Scholar 

  • Yu, F. et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J. Hazard. Mater. 415, 125511 (2021).

    Article 

    Google Scholar 

  • Medha, I. et al. (3-Aminopropyl)triethoxysilane and iron rice straw biochar composites for the sorption of Cr (vi) and Zn (ii) using the extract of heavy metals contaminated soil. Sci. Total. Environ. 771, 144764 (2021).

    Article 

    Google Scholar 

  • Xu, Z. et al. Interaction with low molecular weight organic acids affects the electron shuttling of biochar for Cr(vi) reduction. J. Hazard. Mater. 378, 120705 (2019).

    Article 

    Google Scholar 

  • Wang, T. et al. Novel Bi2WO6 loaded N-biochar composites with enhanced photocatalytic degradation of rhodamine B and Cr(vi). J. Hazard. Mater. 389, 121827 (2020).

    Article 

    Google Scholar 

  • Kicińska, A. & Wikar, J. Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry — example from southern Poland. Soil Tillage Res. 205, 104817 (2021).

    Article 

    Google Scholar 

  • Shi, J., Huang, W., Han, H. & Xu, C. Pollution control of wastewater from the coal chemical industry in China: environmental management policy and technical standards. Renew. Sust. Energ. Rev. 143, 110883 (2021).

    Article 

    Google Scholar 

  • Xu, X. et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour. Technol. 241, 887–899 (2017). Highlights the indispensable role of biochar’s inorganic phase in environmental applications, including pollutant removal, carbon sequestration, and soil quality improvement.

    Article 

    Google Scholar 

  • Xu, Z. et al. Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. Chem. Eng. J. 425, 131489 (2021).

    Article 

    Google Scholar 

  • Xu, Z. et al. Participation of soil active components in the reduction of Cr(vi) by biochar: differing effects of iron mineral alone and its combination with organic acid. J. Hazard. Mater. 384, 121455 (2020).

    Article 

    Google Scholar 

  • Nguyen, T. T. N. et al. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total. Environ. 636, 142–151 (2018).

    Article 

    Google Scholar 

  • Lau, A. Y. T. et al. Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere 169, 89–98 (2017).

    Article 

    Google Scholar 

  • Sun, Y. et al. Waste-derived compost and biochar amendments for stormwater treatment in bioretention column: co-transport of metals and colloids. J. Hazard. Mater. 383, 121243–121243 (2020). Shows the promising potential of biochar for stormwater harvesting in sustainable drainage systems.

    Article 

    Google Scholar 

  • Lehmann, J. et al. Biochar effects on soil biota — a review. Soil. Biol. Biochem. 43, 1812–1836 (2011).

    Article 

    Google Scholar 

  • Zhang, S., Lin, Z., Zhang, S. & Ge, D. Stormwater retention and detention performance of green roofs with different substrates: observational data and hydrological simulations. J. Environ. Manage 291, 112682 (2021).

    Article 

    Google Scholar 

  • Tirpak, R. A. et al. Conventional and amended bioretention soil media for targeted pollutant treatment: a critical review to guide the state of the practice. Water Res. 189, 116648 (2021).

    Article 

    Google Scholar 

  • Tian, J. et al. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res. 148, 378–387 (2019).

    Article 

    Google Scholar 

  • Marcińczyk, M. & Oleszczuk, P. Biochar and engineered biochar as slow- and controlled-release fertilizers. J. Clean. Prod. 339, 130685 (2022).

    Article 

    Google Scholar 

  • Danish, A. et al. Reusing biochar as a filler or cement replacement material in cementitious composites: a review. Constr. Build. Mater. 300, 124295 (2021).

    Article 

    Google Scholar 

  • Llovet, A. et al. Fresh biochar application provokes a reduction of nitrate which is unexplained by conventional mechanisms. Sci. Total. Environ. 755, 142430 (2021).

    Article 

    Google Scholar 

  • Mohanty, S. K., Cantrell, K. B., Nelson, K. L. & Boehm, A. B. Efficacy of biochar to remove Escherichia coli from stormwater under steady and intermittent flow. Water Res. 61, 288–296 (2014).

    Article 

    Google Scholar 

  • Valenca, R. et al. Biochar selection for Escherichia coli removal in stormwater biofilters. Int. J. Environ. Eng. 147, 1843 (2021).

    Google Scholar 

  • Xu, Z., He, M., Xu, X., Cao, X. & Tsang, D. C. W. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresour. Technol. 338, 125555 (2021). Reveals how aggressive modification of biochar might lead to a decrease in carbon stability, which needs further consideration.

    Article 

    Google Scholar 

  • Ulrich, B. A., Loehnert, M. & Higgins, C. P. Improved contaminant removal in vegetated stormwater biofilters amended with biochar. Environ. Sci. Water Res. Technol. 3, 726–734 (2017).

    Article 

    Google Scholar 

  • Ashoori, N. et al. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Res. 154, 1–11 (2019).

    Article 

    Google Scholar 

  • Spokas, K. A. et al. Physical disintegration of biochar: an overlooked process. Environ. Sci. Technol. Lett. 1, 326–332 (2014).

    Article 

    Google Scholar 

  • Wang, L. et al. Biochar aging: mechanisms, physicochemical changes, assessment, and implications for field applications. Environ. Sci. Technol. 54, 14797–14814 (2020). Highlights how ageing processes might have a strong impact on the long-term performance of biochar.

    Article 

    Google Scholar 

  • Yang, X., Pan, H., Shaheen, S. M., Wang, H. & Rinklebe, J. Immobilization of cadmium and lead using phosphorus-rich animal-derived and iron-modified plant-derived biochars under dynamic redox conditions in a paddy soil. Environ. Int. 156, 106628 (2021).

    Article 

    Google Scholar 

  • Beiyuan, J. et al. (Im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environ. Int. 135, 105376 (2020).

    Article 

    Google Scholar 

  • Beckers, F. et al. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environ. Int. 127, 276–290 (2019).

    Article 

    Google Scholar 

  • Tong, M., He, L., Rong, H., Li, M. & Kim, H. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment. Water Res. 169, 115284 (2020).

    Article 

    Google Scholar 

  • Chen, M. et al. Facilitated transport of cadmium by biochar–Fe3O4 nanocomposites in water-saturated natural soils. Sci. Total. Environ. 684, 265–275 (2019).

    Article 

    Google Scholar 

  • Song, B., Chen, M., Zhao, L., Qiu, H. & Cao, X. Physicochemical property and colloidal stability of micron- and nano-particle biochar derived from a variety of feedstock sources. Sci. Total Environ. 661, 685–695 (2019).

    Article 

    Google Scholar 

  • Gui, X. et al. Soil colloids affect the aggregation and stability of biochar colloids. Sci. Total Environ. 771, 145414 (2021).

    Article 

    Google Scholar 

  • Negative Emission Technologies: What Role in Meeting Paris Agreement Targets? (European Academies’ Science Advisory Council, 2018).

  • Hu, Q. et al. Biochar industry to circular economy. Sci. Total. Environ. 757, 143820 (2021).

    Article 

    Google Scholar 

  • Maroušek, J. Significant breakthrough in biochar cost reduction. Clean. Technol. Environ. Policy 16, 1821–1825 (2014).

    Article 

    Google Scholar 

  • Pourhashem, G., Hung, S. Y., Medlock, K. B. & Masiello, C. A. Policy support for biochar: review and recommendations. Glob. Change Biol. Bioenergy 11, 364–380 (2019).

    Article 

    Google Scholar 

  • State and Trends of Carbon Pricing 2020 (World Bank Group, 2020).

  • Standardized Product Definition and Product Testing Guidelines for Biochar that is used in Soil Version 2.1 (International Biochar Initiative (IBI), 2015).

  • European Biochar Certificate — Guidelines for a Sustainable Production of Biochar Version 9.3E of 11 April 2021. (European Biochar Foundation, 2012).

  • Shackley, S., Ibarrola Esteinou, R., Hopkins, D. & Hammond, J. Biochar Quality Mandate (BQM) Version 1.0 (British Biochar Foundation, 2014).

  • Meyer, S. et al. Biochar standardization and legislation harmonization. Int. J. Environ. Eng. Landsc. Manage 25, 175–191 (2017).

    Article 

    Google Scholar 

  • Azzi, E. S., Karltun, E. & Sundberg, C. Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environ. Sci. Technol. 53, 8466–8476 (2019).

    Article 

    Google Scholar 

  • ESG Investing: Environmental Pillar Scoring and Reporting (OECD, 2020).

  • Maroušek, J., Strunecký, O. & Stehel, V. Biochar farming: defining economically perspective applications. Clean. Technol. Environ. Policy 21, 1389–1395 (2019).

    Article 

    Google Scholar 

  • Maroušek, J., Hašková, S., Zeman, R. & Vaníčková, R. Managerial preferences in relation to financial indicators regarding the mitigation of global change. Sci. Eng. Ethics 21, 203–207 (2014).

    Article 

    Google Scholar 

  • Mašek, O., Buss, W. & Sohi, S. Standard biochar materials. Environ. Sci. Technol. 52, 9543–9544 (2018).

    Article 

    Google Scholar 

  • Zhu, X. et al. Machine learning exploration of the direct and indirect roles of Fe impregnation on Cr(vi) removal by engineered biochar. Chem. Eng. J. 428, 131967 (2022).

    Article 

    Google Scholar 

  • Palansooriya, K. N. et al. Prediction of soil heavy metal immobilization by biochar using machine learning. Environ. Sci. Technol. 56, 4187–4198 (2022).

    Article 

    Google Scholar 

  • Marris, E. Black is the new green. Nature 442, 624–626 (2006).

    Article 

    Google Scholar 

  • Lehmann, J. A handful of carbon. Nature 447, 143–144 (2007).

    Article 

    Google Scholar 

  • Woods, W. I., Falcao, N. P. S. & Teixeira, W. G. Biochar trials aim to enrich soil for smallholders. Nature 443, 144–144 (2006).

    Article 

    Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Agronomic values of greenwaste biochar as a soil amendment. Aust. J. Soil. Res. 45, 629–634 (2007).

    Article 

    Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. & Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil. Res. 46, 437–444 (2008).

    Article 

    Google Scholar 

  • Sanchez, M. E., Lindao, E., Margaleff, D., Martinez, O. & Moran, A. Bio-fuels and bio-char production from pyrolysis of sewage sludge. Residuals Sci. Technol. 6, 35–41 (2009).

    Google Scholar 

  • Cao, X. D., Ma, L. N., Gao, B. & Harris, W. Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ. Sci. Technol. 43, 3285–3291 (2009).

    Article 

    Google Scholar 

  • Warren, G. P., Robinson, J. S. & Someus, E. Dissolution of phosphorus from animal bone char in 12 soils. Nutr. Cycl. Agroecosyst. 84, 167–178 (2009).

    Article 

    Google Scholar 

  • Yu, X. Y., Ying, G. G. & Kookana, R. S. Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76, 665–671 (2009).

    Article 

    Google Scholar 

  • Shen, Y. W., Linville, J. L., Urgun-Demirtas, M., Schoene, R. P. & Snyder, S. W. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy 158, 300–309 (2015).

    Article 

    Google Scholar 

  • Ulrich, B. A., Im, E. A., Werner, D. & Higgins, C. P. Biochar and activated carbon for enhanced trace organic contaminant retention in stormwater infiltration systems. Environ. Sci. Technol. 49, 6222–6230 (2015).

    Article 

    Google Scholar 

  • Fang, G., Liu, C., Gao, J., Dionysiou, D. D. & Zhou, D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 49, 5645–5653 (2015).

    Article 

    Google Scholar 

  • Yu, L. P., Yuan, Y., Tang, J., Wang, Y. Q. & Zhou, S. G. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Sci. Rep. 5, 16221 (2015).

    Article 

    Google Scholar 

  • Li, M. et al. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 386, 285–295 (2016).

    Article 

    Google Scholar 

  • Maurer, D. L., Koziel, J. A., Kalus, K., Andersen, D. S. & Opalinski, S. Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability 9, 929 (2017).

    Article 

    Google Scholar 

  • Ayyappan, C. S., Bhalambaal, V. M. & Kumar, S. Effect of biochar on bio-electrochemical dye degradation and energy production. Bioresour. Technol. 251, 165–170 (2018).

    Article 

    Google Scholar 

  • Chen, B. L., Chen, Z. M. & Lv, S. F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour. Technol. 102, 716–723 (2011).

    Article 

    Google Scholar 

  • Nzediegwu, C., Naeth, M. A. & Chang, S. X. Feedstock type drives surface property, demineralization and element leaching of nitric acid-activated biochars more than pyrolysis temperature. Bioresour. Technol. 344, 126316 (2021).

    Article 

    Google Scholar 

  • Li, B. et al. Adsorption of Cd(ii) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175, 332–340 (2017).

    Article 

    Google Scholar 

  • Yu, Y. et al. Synergistic role of bulk carbon and iron minerals inherent in the sludge-derived biochar for As(v) immobilization. Chem. Eng. J. 417, 129183 (2021).

    Article 

    Google Scholar 

  • Sanford, J. R., Larson, R. A. & Runge, T. Nitrate sorption to biochar following chemical oxidation. Sci. Total. Environ. 669, 938–947 (2019).

    Article 

    Google Scholar 

  • Sizmur, T., Fresno, T., Akgül, G., Frost, H. & Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017).

    Article 

    Google Scholar 

  • Zhao, L. et al. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil. ACS Sustain. Chem. Eng. 4, 1630–1636 (2016).

    Article 

    Google Scholar 

  • Cuong, D. V., Wu, P.-C., Chen, L.-I. & Hou, C.-H. Active MnO2/biochar composite for efficient As(iii) removal: insight into the mechanisms of redox transformation and adsorption. Water Res. 188, 116495 (2021).

    Article 

    Google Scholar 

  • Liang, J. et al. Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(iv) versus surface-mediated electron transfer. Environ. Sci. Technol. 55, 10077–10086 (2021).

    Article 

    Google Scholar 

  • Liu, L.-L. et al. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Appl. Catal. B 302, 120845 (2022).

    Article 

    Google Scholar 

  • Zhou, Y. et al. Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy 16, 357–366 (2015).

    Article 

    Google Scholar 

  • Zhang, Z. et al. A novel biochar electrode for efficient electroreduction of nitrate: selective and regulation of halogen. Chemosphere 288, 132400 (2022).

    Article 

    Google Scholar 

  • Chen, P. et al. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 7, 4095–4103 (2014).

    Article 

    Google Scholar 

  • Hagemann, N. et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 8, 1089 (2017).

    Article 

    Google Scholar 

  • Farid, I. M. et al. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: a trial for enhancing the health of low fertile arid soils. Chemosphere 292, 133389 (2022).

    Article 

    Google Scholar 

  • Antonangelo, J. A., Sun, X. & Zhang, H. The roles of co-composted biochar (COMBI) in improving soil quality, crop productivity, and toxic metal amelioration. J. Environ. Manage. 277, 111443 (2021).

    Article 

    Google Scholar 

  • Wang, Y., Xiao, X., Xu, Y. & Chen, B. Environmental effects of silicon within biochar (Sichar) and carbon–silicon coupling mechanisms: a critical review. Environ. Sci. Technol. 53, 13570–13582 (2019).

    Article 

    Google Scholar 

  • Liang, J. et al. High oxygen reduction reaction performance nitrogen-doped biochar cathode: a strategy for comprehensive utilizing nitrogen and carbon in water hyacinth. Bioresour. Technol. 267, 524–531 (2018).

    Article 

    Google Scholar 

  • Parsa, M., Nourani, M., Baghdadi, M., Hosseinzadeh, M. & Pejman, M. Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: characterization and application in wastewater treatment. J. Water Process. Eng. 32, 100942 (2019).

    Article 

    Google Scholar 

  • Zhao, L., Cao, X., Mašek, O. & Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 256–257, 1–9 (2013).

    Google Scholar 

  • Xiao, X., Chen, B. & Zhu, L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 48, 3411–3419 (2014).

    Article 

    Google Scholar 

  • Qiu, Y. et al. Contribution of different iron species in the iron–biochar composites to sorption and degradation of two dyes with varying properties. Chem. Eng. J. 389, 124471 (2020).

    Article 

    Google Scholar 

  • Liu, X. N., Shen, F., Smith, R. L. & Qi, X. H. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresour. Technol. 294, 122198 (2019).

    Article 

    Google Scholar 

  • Luo, J., Yi, Y., Ying, G., Fang, Z. & Zhang, Y. Activation of persulfate for highly efficient degradation of metronidazole using Fe(ii)-rich potassium doped magnetic biochar. Sci. Total Environ. 819, 152089 (2022).

    Article 

    Google Scholar 

  • Nan, H. et al. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: implications to carbon sequestration. Environ. Pollut. 287, 117566 (2021).

    Article 

    Google Scholar 


  • Source: Resources - nature.com

    Viscotoxin and lectin content in foliage and fruit of Viscum album L. on the main host trees of Hyrcanian forests

    Major biodiversity summit will go ahead in Canada not China: what scientists think