in

A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity

[adace-ad id="91168"]
  • Soule, M. The epistasis cycle: a theory of marginal populations. Annu. Rev. Ecol. Syst. 4, 165–187 (1973).

    Article 

    Google Scholar 

  • Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).

    Article 

    Google Scholar 

  • Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).

  • Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article 

    Google Scholar 

  • Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldberg, E. E. & Lande, R. Species’ borders and dispersal barriers. Am. Nat. 170, 297–304 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Bachmann, J. C., Rensburg, A. J. V., Cortazar-Chinarro, M., Laurila, A. & Buskirk, J. V. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Henry, R. C., Bartoń, K. A. & Travis, J. M. J. Mutation accumulation and the formation of range limits. Biol. Lett. 11, 20140871 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrier, A., Sánchez-Castro, D. & Willi, Y. Environment dependence of the expression of mutational load and species’ range limits. J. Evol. Biol. 35, 731–741 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bontrager, M. et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75, 1316–1333 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).

    Article 

    Google Scholar 

  • Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C. & Ackerly, D. D. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26, 1055–1067 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article 

    Google Scholar 

  • Maxwell, M. F., Leprieur, F., Quimbayo, J. P., Floeter, S. R. & Bender, M. G. Global patterns and drivers of beta diversity facets of reef fish faunas. J. Biogeogr. 49, 954–967 (2022).

    Article 

    Google Scholar 

  • Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276, 1485–1493 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).

    Article 

    Google Scholar 

  • Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M. & Hughes, C. E. Biomes as evolutionary arenas: convergence and conservatism in the trans-continental succulent biome. Glob. Ecol. Biogeogr. 29, 1100–1113 (2020).

    Article 

    Google Scholar 

  • Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article 

    Google Scholar 

  • Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 20, 382–393 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).

    Article 

    Google Scholar 

  • Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Chang. Biol. 18, 1042–1052 (2012).

    Article 

    Google Scholar 

  • Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).

    Article 
    PubMed 

    Google Scholar 

  • la Sorte, F. A., Butchart, S. H. M., Jetz, W. & Böhning-Gaese, K. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: implications under global climate change. PLoS One 9, e98361 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).

    Article 

    Google Scholar 

  • Veresoglou, S. D. & Peñuelas, J. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytol. 222, 1352–1363 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).

    Article 

    Google Scholar 

  • McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).

    Article 

    Google Scholar 

  • von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 2013).

  • Cardillo, M. Latitude and rates of diversifcation in birds and butterfies. Proc. R. Soc. Lond. B 266, 1221–1225 (1999).

    Article 

    Google Scholar 

  • Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).

    Article 
    CAS 

    Google Scholar 

  • Crane, P. & Scott, L. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).

    Article 

    Google Scholar 

  • Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, S., Clephan, A. L. & Davies, W. J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 126, 1566–1578 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brodribb, T. J. & Holbrook, N. M. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).

    Article 

    Google Scholar 

  • Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article 

    Google Scholar 

  • Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).

    Article 

    Google Scholar 

  • Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Basso, B., Martinez-Feria, R. A., Rill, L. & Ritchie, J. T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 12, 1476 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).

    Article 

    Google Scholar 

  • Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30 (2017).

    Article 

    Google Scholar 

  • Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).

    Article 

    Google Scholar 

  • Mendez, C. Spatial autocorrelation analysis in R. R Studio/RPubs. https://rpubs.com/quarcs-lab/spatial-autocorrelation (2020).

  • Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).

    Article 

    Google Scholar 

  • Fernández-Martínez, M. et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).

    Article 

    Google Scholar 

  • Bartoń, K. MuMIn: multi-model inference. R package v.1.10.1. (2013).

  • F. Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Working to make nuclear energy more competitive

    Titanic robots make farming more sustainable