in

Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies

[adace-ad id="91168"]
  • Eilers, E. J., Kremen, C., Smith Greenleaf, S., Garber, A. K. & Klein, A. M. Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE 6, 21363 (2011).

    ADS 

    Google Scholar 

  • Williams, P. H. The dependence of crop pollination within the European Union on pollination by honey bees. Agric. Zool. Rev. 6, 229–257 (1994).

    Google Scholar 

  • Burd, M. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Bot. Rev. 60, 83–139 (1994).

    MathSciNet 

    Google Scholar 

  • Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).

    Google Scholar 

  • Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).

    Google Scholar 

  • van Engelsdorp, D., Hayes, J., Underwood, R. M. & Pettis, J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3, e4071 (2008).

    ADS 

    Google Scholar 

  • Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009).

    CAS 

    Google Scholar 

  • Van Engelsdorp, D. et al. Colony collapse disorder: A descriptive study. PLoS ONE 4, e6481 (2009).

    ADS 

    Google Scholar 

  • Genersch, E. American foulbrood in honeybees and its causative agent, Paenibacillus larvae. J. Invertebr. Pathol. 103(suppl 1), 10–19 (2010).

    Google Scholar 

  • Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).

    Google Scholar 

  • Insolia, L. et al. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci. Rep. 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9(4), e94482 (2014).

    ADS 

    Google Scholar 

  • Bolognesi, C. & Merlo, F. D. Pesticides: Human health effects. Encyclop. Environ. Health 1, 438–453 (2011).

    Google Scholar 

  • Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 1, e9754 (2015).

    Google Scholar 

  • Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114. https://doi.org/10.1016/j.envpol.2018.05.062 (2018).

    Article 
    CAS 

    Google Scholar 

  • Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 2016(7), 12459 (2016).

    ADS 

    Google Scholar 

  • Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pestic. Biochem. Physiol. 188, 105219. https://doi.org/10.1016/j.pestbp.2022.105219 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ludicke, J. C. & Nieh, J. C. Thiamethoxam impairs honey bee visual learning, alters decision times, and increases abnormal behaviors. Ecotoxicol. Environ. Saf. 193, 110367 (2020).

    CAS 

    Google Scholar 

  • Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15(10), e0241134 (2020).

    CAS 

    Google Scholar 

  • Fent, K., Schmid, M. & Christen, V. Global transcriptome analysis reveals relevant effects at environmental concentrations of cypermethrin in honey bees (Apis mellifera). Environ. Pollut. 259, 113715 (2020).

    CAS 

    Google Scholar 

  • Christen, V., Krebs, J., Bünter, I. & Fent, K. Biopesticide spinosad induces transcriptional alterations in genes associated with energy production in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 378, 120736 (2019).

    CAS 

    Google Scholar 

  • Christen, V., Krebs, J. & Fent, K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 377, 215–226 (2019).

    CAS 

    Google Scholar 

  • Fent, K., Haltiner, T., Kunz, P. & Christen, V. Insecticides cause transcriptional alterations of endocrine related genes in the brain of honey bee foragers. Chemosphere 260, 127542 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Christen, V., Grossar, D., Charrière, J. D., Eyer, M. & Jeker, L. Correlation between increased homing flight duration and altered gene expression in the brain of honey bee foragers after acute oral exposure to thiacloprid and thiamethoxam. Insect Sci. 1, 1–15 (2021).

    Google Scholar 

  • Mao, W., Schuler, M. A. & Berenbaum, M. R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 114(10), 2538–2543 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Christen, V., Kunz, P. Y. & Fent, K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators?. Environ. Pollut. 243(Pt B), 1588–1601 (2018).

    CAS 

    Google Scholar 

  • Testai, E., Buratti, F. & Di Consiglio, E. Chlorpyrifos Hayes’ Handbook of Pesticide Toxicology 1505–1526 (Academic Press, 2010).

    Google Scholar 

  • Eastmond, D. & Balakrishnan, S. Genotoxicity of Pesticides Hayes’ Handbook of Pesticide Toxicology 357–380 (Academic Press, 2010).

    Google Scholar 

  • Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42(2), 127–138 (2016).

    CAS 

    Google Scholar 

  • Li, Z. et al. Effects of sublethal concentrations of chlorpyrifos on olfactory learning and memory performances in two bee species, Apis mellifera and Apis cerana. Sociobiology 64, 174 (2017).

    Google Scholar 

  • DeGrandi-Hoffman, G., Chen, Y. & Simonds, R. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.). Insects 4, 71–89 (2013).

    Google Scholar 

  • Cutler, G. C., Purdy, J., Giesy, J. P. & Solomon, K. R. Risk to pollinators from the use of chlorpyrifos in the United States. In Ecological Risk Assessment for Chlorpyrifos in Terrestrial and Aquatic Systems in the United States Reviews of Environmental Contamination and Toxicology (eds Giesy, J. & Solomon, K.) (Springer, 2014).

    Google Scholar 

  • Christen, V. & Fent, K. Exposure of honey bees (Apis mellifera) to different classes of insecticides exhibit distinct molecular effect patterns at concentrations that mimic environmental contamination. Environ. Pollut. 226, 48–59 (2017).

    CAS 

    Google Scholar 

  • Stevenson, J. H. The acute toxicity of unformulated pesticides to worker honey bees (Apis mellifera L.). Plant Pathol. 27, 38–40 (1978).

    CAS 

    Google Scholar 

  • Bartlett, D. W. et al. The strobilurin fungicides. Pest. Manag. Sci. 58, 649–662 (2002).

    CAS 

    Google Scholar 

  • Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects. 10, 13 (2019).

    Google Scholar 

  • Inoue, L. V. B., Domingues, C. E. C., Gregorc, A., Silva-Zacarin, E. C. M. & Malaspina, O. Harmful effects of pyraclostrobin on the fat body and pericardial cells of foragers of africanized honey bee. Toxics 10, 530. https://doi.org/10.3390/toxics10090530 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nicodemo, D. et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees. Environ. Toxicol. Chem. 39, 1267–1272 (2020).

    CAS 

    Google Scholar 

  • Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M. & Malaspina, O. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environ. Pollut. 266, 115267 (2020).

    Google Scholar 

  • Tadei, R. et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci. Rep 9, 3277 (2019).

    ADS 

    Google Scholar 

  • Zioga, E., Kelly, R., White, B. & Stout, J. C. Plant protection product residues in plant pollen and nectar: A review of current knowledge. Environ. Res. 189, 109873 (2020).

    CAS 

    Google Scholar 

  • Corona, M. et al. Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. Proc. Natl. Acad. Sci. USA 104, 7128–7133 (2007).

    ADS 
    CAS 

    Google Scholar 

  • Winston, M. L. The Biology of the Honey Bee (Harvard University Press, 1987).

    Google Scholar 

  • Ueno, T., Nakaoka, T., Takeuchi, H. & Kubo, T. Differential gene expression in the hypopharyngeal glands of worker honeybees (Apis mellifera L.) associated with an age-dependent role change. Zool. Sci. 8, 557–563 (2009).

    Google Scholar 

  • Kubo, T. et al. Change in the expression of hypopharyngealgland proteins of the worker honeybees (Apis mellifera L.) with age and/or role. J. Biochem. 119, 291–295 (1996).

    CAS 

    Google Scholar 

  • Ohashi, K., Sawata, M., Takeuchi, H., Natori, S. & Kubo, T. Molecular cloning of cDNA and analysis of expression of the gene for alpha-glucosidase from the hypopharyngeal gland of the honeybee Apis mellifera L. Biochem. Biophys. Res. Commun. 221, 380–385 (1996).

    CAS 

    Google Scholar 

  • Ohashi, K., Natori, S. & Kubo, T. Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age dependent role change of the worker honeybee (Apis mellifera L.). Eur. J. Biochem. 265, 127–133 (1999).

    CAS 

    Google Scholar 

  • Chanchao, C., Padoongsupalai, R. & Sangvanich, P. Expression and characterization of α-glucosidase III in the dwarf honeybee, Apis florea (Hymenoptera: Apoidea: Apidae). Insect Sci. 14(4), 283–293 (2007).

    CAS 

    Google Scholar 

  • Corby-Harris, V. & Snyder, L. A. Measuring hypopharyngeal gland acinus size in honey bee (Apis mellifera) Workers. J. Vis. Exp. 139, 58261 (2018).

    Google Scholar 

  • Yamada, T. & Yamada, K. Comparison of long-term changes in size and longevity of bee colonies in mid-west Japan and Maui with and without exposure to pesticide, cold winters, and mites. PeerJ 8, e9505 (2020).

    Google Scholar 

  • Rinkevich, F. D. et al. Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS ONE 10(10), e0139841 (2015).

    Google Scholar 

  • Weidenmüller, A. The control of nest climate in bumblebee (Bombus terrestris) colonies: Interindividual variability and self reinforcement in fanning response. Behav. Ecol. 15(1), 120–128 (2004).

    MathSciNet 

    Google Scholar 

  • Flatt, T., Tu, M. P. & Tatar, M. Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history. BioEssays 27, 999–1010 (2005).

    CAS 

    Google Scholar 

  • Wu, M. C., Chang, Y. W., Lu, K. H. & Yang, E. C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect. Biochem. Mol. Biol. 88, 12–20 (2017).

    CAS 

    Google Scholar 

  • Ament, S. A., Corona, M., Pollock, H. S. & Robinson, G. E. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies. Proc. Natl. Acad. Sci. USA 105, 4226–4231 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Nicodemo, D. et al. Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environ. Toxicol. Chem. 33(9), 2070–2075 (2014).

    CAS 

    Google Scholar 

  • Syromyatnikov, M. Y., Lopatin, A. V., Starkov, A. A. & Popov, V. N. Isolation and properties of flight muscle mitochondria of the bumblebee Bombus terrestris (L.). Biochemistry 78(8), 909–914 (2013).

    CAS 

    Google Scholar 

  • Dayer, F. C. Coadaptation of colony design and worker performance in honeybees. In Diversity in the Genus Apis (ed. Smith, D. R.) 2133–2245 (Westview Press, 1991).

    Google Scholar 

  • Simon-Delso, N., Amaral-Rogers, V. & Belzunces, L. P. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).

    CAS 

    Google Scholar 

  • Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect. Mol. Biol. 5, 645–656 (2006).

    Google Scholar 

  • Pankiw, T. & Page, R. E. Response thresholds to sucrose predict foraging division of labor in honeybees. Behav. Ecol. Sociobiol. 47, 265–267 (2000).

    Google Scholar 


  • Source: Ecology - nature.com

    Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

    Rescuing small plastics from the waste stream