in

Evaluating the effects of giraffe skin disease and wire snare wounds on the gaits of free-ranging Nubian giraffe

[adace-ad id="91168"]
  • Muller, Z. et al. Giraffa camelopardalis. The IUCN red list of threatened species 2016:e.T9194A109326950 (2018).

  • Oconnor, D. et al. Updated geographic range maps for giraffe, Giraffa spp., throughout sub-Saharan Africa, and implications of changing distributions for conservation. Mamm. Rev. 49, 285–299. https://doi.org/10.1111/mam.12165 (2019).

    Article 

    Google Scholar 

  • Brown, M. B. et al. Conservation status of giraffe: Evaluating contemporary distribution and abundance with evolving taxonomic perspectives. Ref. Module Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-821139-7.00139-2 (2021).

    Article 

    Google Scholar 

  • Dunn, M. E. et al. Investigating the international and pan-African trade in giraffe parts and derivatives. Conserv. Sci. Pract. 3, e390. https://doi.org/10.1111/csp2.390 (2021).

    Article 

    Google Scholar 

  • Hassanin, A. et al. Mitochondrial DNA variability in Giraffa camelopardalis: Consequences for taxonomy, phylogeography and conservation of giraffes in West and Central Africa. C.R. Biol. 330, 265–274. https://doi.org/10.1016/j.crvi.2007.02.008 (2007).

    Article 
    CAS 

    Google Scholar 

  • Groves, C. & Grubb, P. Ungulate Taxonomy (Johns Hopkins University Press, 2011).

    Book 

    Google Scholar 

  • Fennessy, J. et al. Multi-locus analyses reveal four giraffe species instead of one. Curr. Biol. 26, 1–7. https://doi.org/10.1016/j.cub.2016.07.036 (2016).

    Article 
    CAS 

    Google Scholar 

  • Winter, S., Fennessy, J. & Janke, A. Limited introgression supports division of giraffe into four species. Ecol. Evol. 8, 10156–10165. https://doi.org/10.1002/ece3.4490 (2018).

    Article 

    Google Scholar 

  • Bercovitch, F. B. Giraffe taxonomy, geographic distribution, and conservation. Afr. J. Ecol. 58, 150–158. https://doi.org/10.1111/aje.12741 (2020).

    Article 

    Google Scholar 

  • Petzold, A. & Hassanin, A. A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: A case study of the genus Giraffa (Mammalia, Cetartiodactyla). PLoS ONE 15, e0217956. https://doi.org/10.1371/journal.pone.0217956 (2020).

    Article 
    CAS 

    Google Scholar 

  • Petzold, A. et al. First insights into past biodiversity of giraffes based on mitochondrial sequences from museum specimens. Eur. J. Taxon. 703, L57-63. https://doi.org/10.1371/journal.pone.0217956 (2020).

    Article 
    CAS 

    Google Scholar 

  • Coimbra, R. T. F. et al. Whole-genome analysis of giraffe supports four distinct species. Curr. Biol. 31, 2929-2938.e5. https://doi.org/10.1016/j.cub.2021.04.033 (2021).

    Article 
    CAS 

    Google Scholar 

  • Muneza, A. B. et al. Giraffa camelopardalis ssp. reticulata. The IUCN Red List of Threatened Species 2018:e.T88420717A88420720 (2018).

  • Miller, M. F. Dispersal of Acacia seeds by ungulates and ostriches in an African Savanna. J. Trop. Ecol. 12, 345–356. https://doi.org/10.1017/S0266467400009548 (1996).

    Article 

    Google Scholar 

  • Palmer, T. M. et al. Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319, 192–195. https://doi.org/10.1126/science.1151579 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kalema, G. Investigation of a skin disease in giraffe in Murchison Falls National Park. Report Submitted to Uganda National Park. Uganda National Parks. Kampala, Uganda (1996).

  • Muneza, A. B. et al. Regional variation of the manifestation, prevalence, and severity of giraffe skin disease: A review of an emerging disease in wild and captive giraffe populations. Biol. Conserv. 198, 145–156. https://doi.org/10.1016/j.biocon.2016.04.014 (2016).

    Article 

    Google Scholar 

  • Epaphras, A. M., Karimuribo, E. D., Mpanduji, D. G. & Meing’ataki, G. E. Prevalence, disease description and epidemiological factors of a novel skin disease in giraffes (Giraffa camelopardalis) in Ruaha National Park, Tanzania. Res. Opin. Anim. Vet. Sci. 2, 60–65 (2012).

    Google Scholar 

  • Lee, D. E. & Bond, M. L. The occurrence and prevalence of giraffe skin disease in protected areas of northern Tanzania. J. Wildl. Dis. 52, 753–755. https://doi.org/10.7589/2015-09-24 (2016).

    Article 

    Google Scholar 

  • Muneza, A. B. et al. Examining disease prevalence for species of conservation concern using non-invasive spatial capture–recapture techniques. J. Appl. Ecol. 54, 709–717. https://doi.org/10.1111/1365-2664.12796 (2017).

    Article 

    Google Scholar 

  • Brown, M. Murchison falls giraffe project: Field report. Giraffid 9, 5–10 (2015).

    Google Scholar 

  • Muneza, A. B. et al. Quantifying the severity of an emerging skin disease affecting giraffe populations using photogrammetry analysis of camera trap data. J. Wildl. Dis. 55, 770–781. https://doi.org/10.7589/2018-06-149 (2019).

    Article 

    Google Scholar 

  • Han, S. et al. Giraffe skin disease: Clinicopathologic characterization of cutaneous filariasis in the critically endangered Nubian giraffe (Giraffa camelopardalis camelopardalis). Vet. Pathol. https://doi.org/10.1177/03009858221082606 (2022).

    Article 

    Google Scholar 

  • Whittier, C. A. et al. Cutaneous filariasis in free-ranging Rothschild’s giraffes (Giraffa Camelopardalis rothschildi) in Uganda. J. Wildl. Dis. 56, 1–5. https://doi.org/10.7589/2018-09-212 (2020).

    Article 

    Google Scholar 

  • Pellew, R. Food consumption and energy budgets of the giraffe. J. Appl. Ecol. 21, 141–159. https://doi.org/10.2307/2403043 (1984).

    Article 

    Google Scholar 

  • Strauss, M. K. L. & Packer, C. Using claw marks to study lion predation on giraffes of the Serengeti. J. Zool. 289, 134–142. https://doi.org/10.1111/j.1469-7998.2012.00972.x (2013).

    Article 

    Google Scholar 

  • Muneza, A. B. et al. Exploring the connections between giraffe skin disease and lion predation. J. Zool. https://doi.org/10.1111/jzo.12930 (2021).

    Article 

    Google Scholar 

  • Lindsey, P. A. et al. The bushmeat trade in African savannas: Impacts, drivers, and possible solutions. Biol. Conserv. 160, 80–96. https://doi.org/10.1016/j.biocon.2012.12.020 (2013).

    Article 

    Google Scholar 

  • Becker, M. et al. Evaluating wire-snare poaching trends and the impacts of by-catch on elephants and large carnivores. Biol. Conserv. 158, 26–36. https://doi.org/10.1016/j.biocon.2012.08.017 (2013).

    Article 

    Google Scholar 

  • Mudumba, T., Jingo, S., Heit, D. & Montgomery, R. A. The landscape configuration and lethality of snare poaching of sympatric guilds of large carnivores and ungulates. Afr. J. Ecol. 59, 51–62. https://doi.org/10.1111/aje.12781 (2020).

    Article 

    Google Scholar 

  • Strauss, M. K. L., Kilewo, M., Rentsch, D. & Packer, C. Food supply and poaching limit giraffe abundance in the Serengeti. Popul. Ecol. 57, 505–516. https://doi.org/10.1007/s10144-015-0499-9 (2015).

    Article 

    Google Scholar 

  • Munn, J. Effects of injury on the locomotion of free-ranging chimpanzees in the Budongo Forest Reserve, Uganda. In Primates of Western Uganda: Developments in Primatology: Progress and Prospects (eds. Newton-Fisher, N. E., Notman, H., Paterson, J. D., & Reynolds, V.) 259–280 (Springer, 2006).

  • Yersin, H., Asiimwe, C., Voordouw, M. J. & Zuberbühler, K. Impact of snare injuries on parasite prevalence in wild chimpanzees (Pan troglodytes). Int. J. Primatol. 38, 21–30. https://doi.org/10.1007/s10764-016-9941-x (2017).

    Article 

    Google Scholar 

  • Dagg, A. I. Gaits of the giraffe and okapi. J. Mammal. 41, 282–282. https://doi.org/10.2307/1376381 (1960).

    Article 

    Google Scholar 

  • Dagg, A. I. The role of the neck in the movements of the giraffe. J. Mammal. 43, 88–97. https://doi.org/10.2307/1376883 (1962).

    Article 

    Google Scholar 

  • Dagg, A. I. & Vos, A. D. The walking gaits of some species of Pecora. J. Zool. 155, 103–110. https://doi.org/10.1111/j.1469-7998.1968.tb03031.x (1968).

    Article 

    Google Scholar 

  • Alexander, R. M. N., Langman, V. A. & Jayes, A. S. Fast locomotion of some African ungulates. J. Zool. 183, 291–300. https://doi.org/10.1111/j.1469-7998.1977.tb04188.x (1977).

    Article 

    Google Scholar 

  • Basu, C., Deacon, F., Hutchinson, J. R. & Wilson, A. M. The running kinematics of free-roaming giraffes, measured using a low cost unmanned aerial vehicle (UAV). PeerJ 7, e6312. https://doi.org/10.7717/peerj.6312 (2019).

    Article 

    Google Scholar 

  • Basu, C., Wilson, A. M. & Hutchinson, J. R. The locomotor kinematics and ground reaction forces of walking giraffes. J. Exp. Biol. 222, jeb159277. https://doi.org/10.1242/jeb.159277 (2019).

    Article 

    Google Scholar 

  • Hildebrand, M. The adaptive significance of tetrapod gait selection. Am. Zool. 20, 255–267. https://doi.org/10.1093/icb/20.1.255 (1980).

    Article 

    Google Scholar 

  • Flower, F. C., Sanderson, D. J. & Weary, D. M. Hoof pathologies influence kinematic measures of dairy cow gait. J. Dairy Sci. 88, 3166–3173. https://doi.org/10.3168/jds.s0022-0302(05)73000-9 (2005).

    Article 
    CAS 

    Google Scholar 

  • Brown, M. B., Bolger, D. T. & Fennessy, J. All the eggs in one basket: A countrywide assessment of current and historical giraffe population distribution in Uganda. Glob. Ecol. Conserv. 19, e00612. https://doi.org/10.1016/j.gecco.2019.e00612 (2019).

    Article 

    Google Scholar 

  • Foster, J. B. The giraffe of Nairobi National Park: Home range, sex ratios, the herd, and food. Afr. J. Ecol. 4, 139–148. https://doi.org/10.1111/j.1365-2028.1966.tb00889.x (1966).

    Article 

    Google Scholar 

  • Bond, M. L., Strauss, M. K. L. & Lee, D. E. Soil correlates and mortality from giraffe skin disease in Tanzania. J. Wildl. Dis. 52, 953–958. https://doi.org/10.7589/2016-02-047 (2016).

    Article 

    Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L., Hieronymus, T. & Young, J. W. A user’s guide for the quantitative analysis of substrate characteristics and locomotor kinematics in free-ranging primates. Am. J. Phys. Anthropol. 167, 569–584. https://doi.org/10.1002/ajpa.23686 (2018).

    Article 

    Google Scholar 

  • Rueden, C. T. et al. Imagej 2: Imagej for the next generation of scientific image data. BMC Bioinform. 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).

    Article 

    Google Scholar 

  • Cartmill, M., Lemelin, P. & Schmitt, D. Support polygons and symmetrical gaits in mammals. Zool. J. Linn. Soc. 136, 401–420. https://doi.org/10.1046/j.1096-3642.2002.00038.x (2002).

    Article 

    Google Scholar 

  • Hildebrand, M. Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica 6, 1–22. https://doi.org/10.2307/1379571 (1966).

    Article 

    Google Scholar 

  • Shapiro, L. J. & Young, J. W. Kinematics of quadrupedal locomotion in sugar gliders (Petaurus breviceps): Effects of age and substrate size. J. Exp. Biol. 215, 480–496. https://doi.org/10.1242/jeb.062588 (2012).

    Article 

    Google Scholar 

  • Shapiro, L. J., Young, J. W. & VandeBerg, J. L. Body size and the small branch niche: Using marsupial ontogeny to model primate locomotor evolution. J. Hum. Evol. 68, 14–31. https://doi.org/10.1016/j.jhevol.2013.12.006 (2014).

    Article 

    Google Scholar 

  • Dunham, N. T., McNamara, A., Shapiro, L., Phelps, T. & Young, J. W. Asymmetrical gait kinematics of free-ranging callitrichines in response to changes in substrate diameter, orientation, and displacement. J. Exp. Biol. 223, jeb217562. https://doi.org/10.1242/jeb.217562 (2020).

    Article 

    Google Scholar 

  • Robinson, R., Herzog, W. & Nigg, B. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manipulative Physiol. Ther. 10, 172–176 (1987).

    CAS 

    Google Scholar 

  • Vanden Hole, C. et al. How innate is locomotion in precocial animals? A study on the early development of spatiotemporal gait variables and gait symmetry in piglets. J. Exp. Biol. 220, 2706–2716. https://doi.org/10.1242/jeb.157693 (2017).

    Article 

    Google Scholar 

  • Jacobs, B. Y., Kloefkorn, H. E. & Allen, K. D. Gait analysis methods for rodent models of osteoarthritis. Curr. Pain Headache Rep. 18, 456–475. https://doi.org/10.1007/s11916-014-0456-x (2014).

    Article 

    Google Scholar 

  • Pfau, T., Spence, A., Starke, S., Ferrari, M. & Wilson, A. Modern riding style improves horse racing times. Science 325, 289–289. https://doi.org/10.1126/science.1174605 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). http://www.R-project.org/.

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. LmerTest package: Tests in linear mixed effects models. J. Stat. Softw. https://doi.org/10.18637/jss.v082.i13 (2017).

    Article 

    Google Scholar 

  • Length, R. emmeans: Estimated marginal means, aka least‐squares means. R package version 0.9. https://CRAN.R-project.org/package=emmeans (2017).

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Merkens, H. W. & Schamhardt, H. C. Evaluation of equine locomotion during different degrees of experimentally induced lameness I: Lameness model and quantification of ground reaction force patterns of the limbs. Equine Vet. J. 20, 99–106. https://doi.org/10.1111/j.2042-3306.1988.tb04655.x (1988).

    Article 

    Google Scholar 

  • Fanchon, L. & Grandjean, D. Accuracy of asymmetry indices of ground reaction forces for diagnosis of hind limb lameness in dogs. Am. J. Vet. Res. 68, 1089–1094. https://doi.org/10.2460/ajvr.68.10.1089 (2007).

    Article 

    Google Scholar 

  • Bragança, F. M. S., Rhodin, M. & van Weeren, P. R. On the brink of daily clinical application of objective gait analysis: What evidence do we have so far from studies using an induced lameness model?. Vet. J. 234, 11–23. https://doi.org/10.1016/j.tvjl.2018.01.006 (2018).

    Article 

    Google Scholar 

  • Brown, M. B. & Bolger, D. T. Male-biased partial migration in a giraffe population. Front. Ecol. Evol. 7, 524. https://doi.org/10.3389/fevo.2019.00524 (2020).

    Article 

    Google Scholar 

  • Dagg, A. I. Giraffe: Biology, Behaviour and Conservation (Cambridge University Press, 2014).

    Book 

    Google Scholar 

  • Castles, M. P. et al. Relationships between male giraffes’ colour, age and sociability. Anim. Behav. 157, 13–25. https://doi.org/10.1016/j.anbehav.2019.08.003 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

    Rescuing small plastics from the waste stream