in

Forest edges increase pollinator network robustness to extinction with declining area

[adace-ad id="91168"]
  • Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 2902 (2021).

    Article 
    CAS 

    Google Scholar 

  • Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).

    Article 

    Google Scholar 

  • Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).

    Article 

    Google Scholar 

  • Rybicki, J., Abrego, N. & Ovaskainen, O. Habitat fragmentation and species diversity in competitive communities. Ecol. Lett. 23, 506–517 (2020).

    Article 

    Google Scholar 

  • Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).

    Article 

    Google Scholar 

  • Didham, R. K. Ecological consequences of habitat fragmentation. In Encyclopedia of Life Sciences (ed Jansson, R.), 61, 1–39 (Wiley, UK2010).

  • Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    Article 
    CAS 

    Google Scholar 

  • Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology 94, 2688–2696 (2013).

    Article 

    Google Scholar 

  • Aizen, M. A. et al. The phylogenetic structure of plant-pollinator networks increases with habitat size and isolation. Ecol. Lett. 19, 29–36 (2016).

    Article 

    Google Scholar 

  • Emer, C. et al. Seed-dispersal interactions in fragmented landscapes-a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).

    Article 

    Google Scholar 

  • Fortuna, M. A. & Bascompte, J. Habitat loss and the structure of plant-animal mutualistic networks. Ecol. Lett. 9, 278–283 (2006).

    Article 

    Google Scholar 

  • Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).

    Article 

    Google Scholar 

  • Glenn R. Matlack & John A. Litvaitis. Forest edges. In Maintaining Biodiversity in Forest Ecosystems (ed Hunter, M.) 6, 210–233 (Cambridge Univ. Press, 1999).

  • Hadley, A. S. & Betts, M. G. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence. Biol. Rev. 87, 526–544 (2012).

    Article 

    Google Scholar 

  • Ibanez, I., Katz, D. S. W., Peltier, D., Wolf, S. M. & Barrie, B. T. C. Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J. Ecol. 102, 882–895 (2014).

    Article 

    Google Scholar 

  • Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).

    Article 
    CAS 

    Google Scholar 

  • Martinez-Ramos, M., Alvarez-Buylla, E. & Sarukhan, J. Tree demography and gap dynamics in a tropical rain forest. Ecology 70, 555–558 (1989).

    Article 

    Google Scholar 

  • Yamamoto, S. I. Forest gap dynamics and tree regeneration. J. For. Res. 5, 223–229 (2000).

    Article 

    Google Scholar 

  • Schnitzer, S. A. & Carson, W. P. Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology 82, 913–919 (2001).

    Article 

    Google Scholar 

  • Kricher, J. A Shifting Mosaic: Rain Forest Development and Dynamics. In Tropical Ecology 6, 188–226 (Princeton Univ. Press, 2011).

  • Gayer, C. et al. Flowering fields, organic farming and edge habitats promote diversity of plants and arthropods on arable land. J. Appl. Ecol. 58, 1155–1166 (2021).

    Article 

    Google Scholar 

  • Bailey, S. et al. Distance from forest edge affects bee pollinators in oilseed rape fields. Ecol. Evol. 4, 370–380 (2014).

    Article 

    Google Scholar 

  • Thebault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article 
    CAS 

    Google Scholar 

  • Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).

    Article 

    Google Scholar 

  • Traveset, A., Castro-Urgal, R., Rotllan-Puig, X. & Lazaro, A. Effects of habitat loss on the plant-flower visitor network structure of a dune community. Oikos 127, 45–55 (2018).

    Article 

    Google Scholar 

  • Rezende, E. L., Lavabre, J. E., Guimaraes, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).

    Article 
    CAS 

    Google Scholar 

  • Staddon, P., Lindo, Z., Crittenden, P. D., Gilbert, F. & Gonzalez, A. Connectivity, non-random extinction and ecosystem function in experimental metacommunities. Ecol. Lett. 13, 543–552 (2010).

    Article 

    Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Callaway, R. M. & Van der Putten, W. H. Terrestrial ecosystem responses to species gains and losses. Science 332, 1273–1277 (2011).

    Article 
    CAS 

    Google Scholar 

  • Sargent, R. D. & Ackerly, D. D. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol. Evol. 23, 123–130 (2008).

    Article 

    Google Scholar 

  • Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    Article 
    CAS 

    Google Scholar 

  • Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).

    Article 

    Google Scholar 

  • Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).

    Article 

    Google Scholar 

  • Pawar, S. Why are plant-pollinator networks nested? Science 345, 383–383 (2014).

    Article 
    CAS 

    Google Scholar 

  • Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Muller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).

    Article 

    Google Scholar 

  • Evans, D. M., Pocock, M. J. O. & Memmott, J. The robustness of a network of ecological networks to habitat loss. Ecol. Lett. 16, 844–852 (2013).

    Article 

    Google Scholar 

  • Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant-pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).

    Article 

    Google Scholar 

  • Wilson, M. C. et al. Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc. Ecol. 31, 219–227 (2016).

    Article 

    Google Scholar 

  • Zhong, L., Didham, R. K., Liu, J., Jin, Y. & Yu, M. Community re-assembly and divergence of woody plant traits in an island-mainland system after more than 50 years of regeneration. Divers. Distrib. 27, 1435–1448 (2021).

    Article 

    Google Scholar 

  • Liu, J. et al. The asymmetric relationships of the distribution of conspecific saplings and adults in forest fragments. J. Plant Ecol. 13, 398–404 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ewers, R. M., Bartlam, S. & Didham, R. K. Altered species interactions at forest edges: contrasting edge effects on bumble bees and their phoretic mite loads in temperate forest remnants. Insect Conserv. Divers. 6, 598–606 (2013).

    Article 

    Google Scholar 

  • Wardhaugh, C. W. The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol. Rev. Camb. Philos. Soc. 89, 1021–1041 (2015).

    Article 

    Google Scholar 

  • Lowman, M. Life in the treetops – an overview of forest canopy science and its future directions. Plants People Planet 3, 16–21 (2021).

    Article 

    Google Scholar 

  • Nakamura, A. et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451 (2017).

    Article 

    Google Scholar 

  • Lennartsson, T. Extinction thresholds and disrupted plant-pollinator interactions in fragmented plant populations. Ecology 83, 3060–3072 (2002).

    Google Scholar 

  • Aguilar, R., Ashworth, L., Galetto, L. & Aizen, M. A. Plant reproductive susceptibility to habitat fragmentation: review and synthesis through a meta-analysis. Ecol. Lett. 9, 968–980 (2006).

    Article 

    Google Scholar 

  • Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).

    Article 

    Google Scholar 

  • Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    Article 

    Google Scholar 

  • Gathmann, A. & Tscharntke, T. Foraging ranges of solitary bees. J. Anim. Ecol. 71, 757–764 (2002).

    Article 

    Google Scholar 

  • Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Entomol. 42, 1–22 (2011).

    Google Scholar 

  • Torné-Noguera, A. et al. Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9, e97255 (2014).

    Article 

    Google Scholar 

  • Roswell, M., Dushoff, J. & Winfree, R. A conceptual guide to measuring species diversity. Oikos 130, 321–338 (2021).

    Article 

    Google Scholar 

  • Schoereder, J. H. et al. Should we use proportional sampling for species-area studies? J. Biogeogr. 31, 1219–1226 (2004).

    Article 

    Google Scholar 

  • Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).

    Article 

    Google Scholar 

  • Devoto, M., Medan, D. & Montaldo, N. H. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109, 461–472 (2005).

    Article 

    Google Scholar 

  • Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575 (2008).

    Article 

    Google Scholar 

  • Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).

    Article 

    Google Scholar 

  • Vazquez, D. P. & Aizen, M. A. Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85, 1251–1257 (2004).

    Article 

    Google Scholar 

  • Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Google Scholar 

  • Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

    Article 

    Google Scholar 

  • Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    Article 
    CAS 

    Google Scholar 

  • Fletcher, R. J. Jr et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15 (2018).

    Article 

    Google Scholar 

  • Ren, P., Si, X. & Ding, P. Stable species and interactions in plant-pollinator networks deviate from core position in fragmented habitats. Ecography 2022, e06102 (2022).

    Article 

    Google Scholar 

  • Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    Google Scholar 

  • Bascompte, J., Jordano, P., Melian, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    Article 
    CAS 

    Google Scholar 

  • Almeida-Neto, M., Guimaraes, P., Guimaraes, P. R. Jr, Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article 

    Google Scholar 

  • Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).

    Article 

    Google Scholar 

  • Dicks, L. V., Corbet, S. A. & Pywell, R. F. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).

    Article 

    Google Scholar 

  • Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan

  • Dormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. R package version 2.16 (2021). https://CRAN.R-project.org/package=bipartite

  • Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).

    Article 
    CAS 

    Google Scholar 

  • Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).

    Article 
    CAS 

    Google Scholar 

  • Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    Article 
    CAS 

    Google Scholar 

  • Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).

    Article 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Grace, J. B., Scheiner, S. M. & Schoolmaster, D. R. Jr. Structural equation modeling: building and evaluating causal models. In Ecological Statistics: From Principles to Applications (eds Fox, G. A. et al.), 8, 168–199 (Oxford Univ. Press, 2015).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  • Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).

    Article 

    Google Scholar 

  • Murphy, M. semEff: Automatic Calculation of Effects for Piecewise Structural Equation Models. R package version 0.6.0 (2021). https://CRAN.R-project.org/package=semEff

  • Dudgeon, P. A comparative investigation of confidence intervals for independent variables in linear regression. Multivar. Behav. Res. 51, 139–153 (2016).

    Article 

    Google Scholar 

  • Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Inst. Press, 1996).

  • Jung, V., Violle, C., Mondy, C., Hoffmann, L. & Muller, S. Intraspecific variability and trait-based community assembly. J. Ecol. 98, 1134–1140 (2010).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    First detection of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus ticks (Acari: Ixodidae) from multiple locations in Hungary

    Chess players face a tough foe: air pollution