in

Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids

[adace-ad id="91168"]
  • Orcutt B, D’Angelo T, Jungbluth SP, Huber JA, Sylvan JB. Microbial life in oceanic crust. OSF Preprints, 2020; https://doi.org/10.31219/osf.io/2wxe6.

  • Koonin EV. On the origin of cells and viruses: primordial virus world scenario. Ann NY Acad Sci. 2009;1178:47–64.

  • Nigro OD, Jungbluth SP, Lin HT, Hsieh CC, Miranda JA, Schvarcz CR, et al. Viruses in the oceanic basement. MBio. 2017;8:1–15.

    Google Scholar 

  • Wheat CG, Jannasch HW, Kastner M, Hulme S, Cowen J, Edwards KJ, et al. Fluid sampling from oceanic borehole observatories: design and methods for CORK activities (1990–2010). 2011. In Fisher AT, Tsuji T, Petronotis K, and the Expedition 327 Scientists, Proc. IODP, 327: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.327.109.2011.

  • Koonin EV, Yutin N Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Advances in Virus Research. 2019. Elsevier, pp 167–202.

  • Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct. 2006;1:29.

    Google Scholar 

  • Shinn GL, Bullard BL. Ultrastructure of Meelsvirus: A nuclear virus of arrow worms (phylum Chaetognatha) producing giant “tailed” virions. PLoS One. 2018;13:e0203282.

    Google Scholar 

  • Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, et al. A student’s guide to giant viruses infecting small eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses. 2017;9:46–63.

  • Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020;578:432–6.

    CAS 

    Google Scholar 

  • Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun. 2020;11:1–11.

    Google Scholar 

  • Martínez Martínez J, Swan BK, Wilson WH. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 2014;8:1079–88.

    Google Scholar 

  • Khalil JYB, Robert S, Reteno DG, Andreani J, Raoult D, La Scola B. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining. Front Microbiol. 2016;7:1–9.

    Google Scholar 

  • Wilson WH, Gilg IC, Moniruzzaman M, Field EK, Koren S, Lecleir GR, et al. Genomic exploration of individual giant ocean viruses. ISME J. 2017;11:1736–45.

    Google Scholar 

  • Roux S, Chan LK, Egan R, Malmstrom RR, McMahon KD, Sullivan MB. Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat Commun. 2017;8:1–12.

  • Schulz F, Alteio L, Goudeau D, Blanchard J, Woyke T, Ryan EM, et al. Hidden diversity of soil giant viruses. Nat Commun. 2018;9:1–9.

  • Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio. 2019;10:e02497-18.

  • Martínez JM, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18:705–16.

  • Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, et al. Giant viruses with an expanded complement of translation system components. Science (80-). 2017;356:82 LP–85.

    Google Scholar 

  • Fisher A, Wheat CG, Becker K, Cowen J, Orcutt BN, Hulme SM, et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge. Proc Integr Ocean Drill Program; Juan Fuca Ridge flank Hydrogeol Exped 327 riserless Drill Platf from to Victoria, Br Columbia (Canada); Sites U1362, U1301, 1027, U1363; 5 July-5 Sept 2010. 2011;327:38.

  • Jungbluth SP, Grote J, Lin HT, Cowen JP, Rappé MS. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J. 2013;7:161–72.

    CAS 

    Google Scholar 

  • Jungbluth SP, Bowers RM, Lin HT, Cowen JP, Rappé MS. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J. 2016;10:2033–47.

    CAS 

    Google Scholar 

  • Jungbluth SP, Amend JP, Rappé MS. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci data. 2017;4:1–11.

    Google Scholar 

  • Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.

    CAS 

    Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci. 2002;99:5261–6.

    CAS 

    Google Scholar 

  • Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS 

    Google Scholar 

  • Bushnell B, Rood J. BBTools. Dep Energy Jt Genome Institute, Walnut Creek, CA 2014.

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    CAS 

    Google Scholar 

  • Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.

    CAS 

    Google Scholar 

  • Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.

    CAS 

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS 

    Google Scholar 

  • Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS, Delwart E, et al. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere. 2018;3:e00069–18.

    Google Scholar 

  • McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–W25.

    CAS 

    Google Scholar 

  • Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.

    CAS 

    Google Scholar 

  • Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431.

    Google Scholar 

  • Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158:2517–21.

    Google Scholar 

  • Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA viruses: Clusters of orthologous genes and reconstruction of viral genome evolution. Virol J. 2009;6:1–13.

    Google Scholar 

  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS 

    Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.

    Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.

    CAS 

    Google Scholar 

  • Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.

    Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.

    CAS 

    Google Scholar 

  • Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.

    Google Scholar 

  • Barrett P, Hunter J, Miller JT, Hsu J-C, Greenfield P matplotlib–A Portable Python Plotting Package. Astron. data Anal. Softw. Syst. XIV. 2005. p 91.

  • Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.

    Google Scholar 

  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955.

    CAS 

    Google Scholar 

  • Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–16.

    CAS 

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547.

    CAS 

    Google Scholar 

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    CAS 

    Google Scholar 

  • Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–D516.

    CAS 

    Google Scholar 

  • Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–D122.

    CAS 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.

    Google Scholar 

  • Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 2014;466–467:38–52.

    Google Scholar 

  • Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 2018; ME17203.

  • Gallot-Lavallée L, Blanc G. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses. 2017;9:17.

    Google Scholar 

  • Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLOS Biol. 2021;19:e3001430.

    CAS 

    Google Scholar 

  • Andreani J, Verneau J, Raoult D, Levasseur A, La, Scola B. Deciphering viral presences: two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome. Virol J. 2018;15:66.

    Google Scholar 

  • Koonin EV, Yutin N. Multiple evolutionary origins of giant viruses. F1000Research. 2018;7:1840.

  • Abrahao JS, Araujo R, Colson P, La, Scola B. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet. 2017;13:e1006532.

    Google Scholar 

  • Filée J, Chandler M. Gene exchange and the origin of giant viruses. Intervirology. 2010;53:354–61.

    Google Scholar 

  • Koonin EV, Yutin N. Nucleo‐cytoplasmic large DNA viruses (NCLDV) of eukaryotes. eLS. 2012. https://doi.org/10.1002/9780470015902.a0023268.

  • Abergel C, Rudinger-Thirion J, Giegé R, Claverie J-M. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol. 2007;81:12406–17.

    CAS 

    Google Scholar 

  • Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet. 2014;5:213.

    Google Scholar 

  • Ivarsson M, Schnürer A, Bengtson S, Neubeck A. Anaerobic fungi: a potential source of biological H2 in the oceanic crust. Front Microbiol. 2016;7:1–8.

  • Ivarsson M, Bengtson S, Neubeck A. The igneous oceanic crust e Earth’ s largest fungal habitat? Fungal Ecol. 2016;20:249–55.

    Google Scholar 

  • Quemener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, et al. Meta‐omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol. 2020;22:3950–67.

    CAS 

    Google Scholar 

  • Drake H, Ivarsson M. The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol Rev. 2017;32:20–25.

    Google Scholar 

  • Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C, Marone F, et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Publ Gr. 2017;1:1–6.

    Google Scholar 

  • Suzuki N. An introduction to fungal viruses. In Encyclopedia of Virology. Bamford DH, Zuckerman M. editors. 431–42. Oxford: Academic Press; 2021.

  • Ivarsson M, Broman C, Holmström SJM, Ahlbom M, Lindblom S, Holm NG. Putative fossilized fungi from the lithified volcaniclastic apron of Gran Canaria, Spain. Astrobiology. 2011;11:633–50.

    CAS 

    Google Scholar 

  • Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F, et al. Deep‐biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology. 2014;12:489–96.

    CAS 

    Google Scholar 

  • Hirayama H, Abe M, Miyazaki J, Sakai S, Nagano Y, Takai K Data report: cultivation of microorganisms from basaltic rock and sediment cores from the North Pond on the western flank of the Mid-Atlantic Ridge, IODP Expedition 336 1. 2015; 336.

  • Ivarsson M, Bengtson S, Skogby H, Lazor P, Broman C A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. 2015.

  • Khan HA, Telengech P, Kondo H, Bhatti MF, Suzuki N. Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan. Front Cell Infect Microbiol. 2022;12:913619.

  • García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. Mycoviruses in biological control: From basic research to field implementation. Phytopathology. 2019;109:1828–39.

    Google Scholar 

  • Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.

    Google Scholar 

  • Okada R, Ichinose S, Takeshita K, Urayama S, Fukuhara T, Komatsu K, et al. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology. 2018;519:23–32.

    CAS 

    Google Scholar 

  • Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA. Mycovirus-induced hypervirulence of Leptosphaeria biglobosa enhances systemic acquired resistance to Leptosphaeria maculans in Brassica napus. Mol Plant-Microbe Interact. 2020;33:98–107.

    CAS 

    Google Scholar 

  • Hillman BI, Annisa A, Suzuki N. Viruses of plant-interacting fungi. Adv Virus Res. 2018;100:99–116.

    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Soil moisture-constrained East Asian Monsoon meridional patterns over China from observations

    Rescuing small plastics from the waste stream