in

Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding

[adace-ad id="91168"]
  • Dove, A. D. & Pierce, S. J. Whale Sharks: Biology, Ecology, and Conservation (CRC Press, 2021).

  • Friedman, M. et al. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327, 990–993 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Friedman, M. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc. R. Soc. B https://doi.org/10.1098/rspb.2011.1381 (2011).

  • Sanderson, S. L. & Wassersug, R. in The Skull: Functional and Evolutionary Mechanisms Vol. 3 (eds Hanken, J. & Hall, B. K.) 37–112 (Univ. Chicago Press, 1993).

  • Rowat, D. & Brooks, K. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pimiento, C., Cantalapiedra, J. L., Shimada, K., Field, D. J. & Smaers, J. B. Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588–599 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stiefel, K. M. Evolutionary trends in large pelagic filter-feeders. Hist. Biol. 33, 1477–1488 (2021).

    Article 

    Google Scholar 

  • Goldbogen, J. & Madsen, P. The largest of August Krogh animals: physiology and biomechanics of the blue whale revisited. Comp. Biochem. Physiol. A 254, 110894 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jørgensen, C. B. Quantitative aspects of filter feeding in invertebrates. Biol. Rev. 30, 391–453 (1955).

    Article 

    Google Scholar 

  • Radke, R. J. & Kahl, U. Effects of a filter‐feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto‐and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshw. Biol. 47, 2337–2344 (2002).

    Article 

    Google Scholar 

  • Schiemer, F. in Perspectives in Tropical Limnology (eds Schiemer, F. & Boland, K.T.) 65–76 (SPB Academic Publishing, 1996).

  • Carey, N. & Goldbogen, J. A. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax. J. Exp. Biol. 220, 2717–2725 (2017).

    PubMed 

    Google Scholar 

  • Haines, G. E. & Sanderson, S. L. Integration of swimming kinematics and ram suspension feeding in a model American paddlefish, Polyodon spathula. J. Exp. Biol. 220, 4535–4547 (2017).

    PubMed 

    Google Scholar 

  • Paig‐Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Jacobsen, I. P. & Bennett, M. B. A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS ONE 8, e71348 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ellis, J. Occurrence of pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) in the North Sea. J. Fish Biol. 71, 933–937 (2007).

    Article 

    Google Scholar 

  • Werth, A. J. & Potvin, J. Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orton, L. S. & Brodie, P. F. Engulfing mechanics of fin whales. Can. J. Zool. 65, 2898–2907 (1987).

    Article 

    Google Scholar 

  • Shadwick, R. E., Goldbogen, J. A., Potvin, J., Pyenson, N. D. & Vogl, A. W. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J. Exp. Biol. 216, 2691–2701 (2013).

    PubMed 

    Google Scholar 

  • Shadwick, R. E., Goldbogen, J. A., Pyenson, N. D. & Whale, J. C. Structure and function in the lunge feeding apparatus: mechanical properties of the fin whale mandible. Anat. Rec. 300, 1953–1962 (2017).

    Article 

    Google Scholar 

  • Werth, A. J., Ito, H. & Ueda, K. Multiaxial movements at the minke whale temporomandibular joint. J. Morphol. 281, 402–412 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Lambertsen, R., Ulrich, N. & Straley, J. Frontomandibular stay of Balaenopteridae: a mechanism for momentum recapture during feeding. J. Mammal. 76, 877–899 (1995).

    Article 

    Google Scholar 

  • Pyenson, N. D. et al. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature 485, 498–501 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bierlich, K. C. et al. A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones. Mar. Ecol. Prog. Ser. 673, 193–210 (2021).

    Article 

    Google Scholar 

  • Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Food Agric. Organ. 3, 379–487 (1981).

    Google Scholar 

  • Mackintosh, A. & Wheeler, J. Southern blue and fin whales. Discover. Rep. 1, 257–540 (1929).

  • Smith, F. A. & Lyons, S. K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Phil. Trans. R. Soc. B 366, 2364–2378 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gearty, W., McClain, C. R. & Payne, J. L. Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl Acad. Sci. USA 115, 4194–4199 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).

    Article 

    Google Scholar 

  • Goldbogen, J. A. Physiological constraints on marine mammal body size. Proc. Natl Acad. Sci. USA 115, 3995–3997 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by super-groups of rorqual whales. Anim. Behav. 182, 251–266 (2021).

    Article 

    Google Scholar 

  • Goldbogen, J. A. et al. Scaling of lunge‐feeding performance in rorqual whales: mass‐specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226 (2012).

    Article 

    Google Scholar 

  • Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. https://doi.org/10.1242/jeb.224196 (2020).

  • McNab, B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q. Rev. Biol. 63, 25–54 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boyd, I. in Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 247–277 (Blackwell Science Ltd, 2002).

  • Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).

    Article 
    CAS 

    Google Scholar 

  • West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate? Mar. Mamm. Sci. 15, 1228–1245 (1999).

    Article 

    Google Scholar 

  • Lockyer, C. Review of baleen whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn 6, 27–50 (1984).

    Google Scholar 

  • Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).

    Article 

    Google Scholar 

  • Frazer, J. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).

    Article 

    Google Scholar 

  • Zhou, M. & Dorland, R. D. Aggregation and vertical migration behavior of Euphausia superba. Deep Sea Res. II 51, 2119–2137 (2004).

    Article 

    Google Scholar 

  • Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Funct. Ecol. 35, 894–908 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gough, W. T. et al. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J. Exp. Biol. 224, jeb237586 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 16 (Univ. California Press, 2006).

  • Woodward, B. L., Winn, J. P. & Fish, F. E. Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J. Morphol. 267, 1284–1294 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Webb, P. W. & De Buffrénil, V. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119, 629–641 (1990).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1577/1548-8659(1990)1192.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1577%2F1548-8659%281990%29119%3C0629%3ALITBOL%3E2.3.CO%3B2″ aria-label=”Article reference 52″ data-doi=”10.1577/1548-8659(1990)1192.3.CO;2″>Article 

    Google Scholar 

  • Acevedo-Gutiérrez, A., Croll, D. & Tershy, B. High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 1747–1753 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. Rorqual lunge-feeding energetics near and away from the kinematic threshold of optimal efficiency. Integr. Org. Biol. 3, obab005 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pyenson, N. D. The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27, R558–R564 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, T. M. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 15 (Univ. California Press, 2006).

  • Tackaberry, J. E. et al. From a calf’s perspective: humpback whale nursing behavior on two US feeding grounds. PeerJ 8, e8538 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, S.-L., Chou, L.-S. & Ni, I.-H. Comparable length at weaning in cetaceans. Mar. Mamm. Sci. 25, 875–887 (2009).

    Article 

    Google Scholar 

  • Rice, D. Marine Mammals of the World: Systematics and Distribution (Society for Marine Mammalogy Special Publication, 1998).

  • McNamara, J. M. & Houston, A. I. The effect of a change in foraging options on intake rate and predation rate. Am. Nat. 144, 978–1000 (1994).

    Article 

    Google Scholar 

  • Mittelbach, G. G. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).

    Article 

    Google Scholar 

  • Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).

    Article 

    Google Scholar 

  • Werth, A. J. et al. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol. J. Linn. Soc. 125, 264–279 (2018).

    Article 

    Google Scholar 

  • Leslie, M. S., Peredo, C. M. & Pyenson, N. D. Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California. PeerJ 7, e7629 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perrin, W. F. Why are there so many kinds of whales and dolphins? Bioscience 41, 460–462 (1991).

    Article 

    Google Scholar 

  • Kot, B. W., Sears, R., Zbinden, D., Borda, E. & Gordon, M. S. Rorqual whale (Balaenopteridae) surface lunge‐feeding behaviors: standardized classification, repertoire diversity, and evolutionary analyses. Mar. Mamm. Sci. 30, 1335–1357 (2014).

    Article 

    Google Scholar 

  • Segre, P. S. et al. Scaling of maneuvering performance in baleen whales: larger whales outperform expectations. J. Exp. Biol. 225, jeb243224 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).

    Google Scholar 

  • Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McMillan, C. J., Towers, J. R. & Hildering, J. The innovation and diffusion of “trap‐feeding,” a novel humpback whale foraging strategy. Mar. Mamm. Sci. 35, 779–796 (2019).

    Article 

    Google Scholar 

  • Robbins, J. & Mattila, D. Estimating Humpback Whale (Megaptera novaeangliae) Entanglement Rates on the Basis of Scar Evidence (Northeast Fisheries Science Center, 2004).

  • Horwood, J. in Encyclopedia of Marine Mammals 2nd edn (eds Wursig, B et al.) 1001–1003 (Elsevier, 2009).

  • Haug, T., Lindstrøm, U. & Nilssen, K. T. Variations in minke whale (Balaenoptera acutorostrata) diet and body condition in response to ecosystem changes in the Barents Sea. Sarsia 87, 409–422 (2002).

    Article 

    Google Scholar 

  • García-Vernet, R., Borrell, A., Víkingsson, G., Halldórsson, S. D. & Aguilar, A. Ecological niche partitioning between baleen whales inhabiting Icelandic waters. Prog. Oceanogr. 199, 102690 (2021).

    Article 

    Google Scholar 

  • Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deméré, T. A., McGowen, M. R., Berta, A. & Gatesy, J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 57, 15–37 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Totterdell, J. A. et al. The first three records of killer whales (Orcinus orca) killing and eating blue whales (Balaenoptera musculus). Mar. Mamm. Sci. 38, 1286–1301 (2022).

    Article 

    Google Scholar 

  • Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).

    Article 
    CAS 

    Google Scholar 

  • Bierlich, K. et al. Comparing uncertainty associated with 1-, 2-, and 3D aerial photogrammetry-based body condition measurements of baleen whales. Front. Mar. Sci. 8, 1729 (2021).

    Article 

    Google Scholar 

  • Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelemetry https://doi.org/10.1186/s40317-021-00256-w (2021).

  • Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).

    PubMed 

    Google Scholar 

  • Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res. II 54, 193–210 (2007).

    Article 

    Google Scholar 

  • Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. A perfectly inelastic collision: bulk prey engulfment by baleen whales and dynamical implications for the world’s largest cetaceans. Am. J. Phys. 88, 851–863 (2020).

    Article 

    Google Scholar 

  • Torres, W. I. & Bierlich, K. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).

    Article 

    Google Scholar 

  • Suter, H. & Houston, A. I. How to model optimal group size in social carnivores. Am. Nat. 197, 473–485 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whale (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doniol-Valcroze, T., Lesage, V., Giard, J. & Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 22, 880–888 (2011).

    Article 

    Google Scholar 

  • Gough, W. T. et al. Fast and furious: energetic tradeoffs and scaling of high-speed foraging in rorqual whales. Integr. Org. Biol. 4, obac038 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laws, R. M. The ecology of the Southern Ocean. Am. Sci. 73, 26–40 (1985).

    Google Scholar 

  • Brown, S. & Lockyer, C. in Antarctic Ecology Vol. 2 (ed. Laws, R. M.) (Academic Press, 1984).

  • Peters, R. H. The Ecological Implications of Body Size Vol. 2 Ch. 7 (Cambridge Univ. Press, 1986).

  • Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evans, E. & Miller, D. Comparative nutrition, growth and longevity. Proc. Nutr. Soc. 27, 121–129 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farlow, J. O. A consideration of the trophic dynamics of a Late Cretaceous large‐dinosaur community (Oldman Formation). Ecology 57, 841–857 (1976).

    Article 

    Google Scholar 

  • Harestad, A. S. & Bunnel, F. Home range and body weight – a reevaluation. Ecology 60, 389–402 (1979).

    Article 

    Google Scholar 

  • Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).

    Article 

    Google Scholar 

  • Calder, W. A. in Avian Energetics (ed. Paynter, R. A.) 86–151 (Nuttall Ornithological Club, 1974).

  • Savage, V. M., Deeds, E. J. & Fontana, W. Sizing up allometric scaling theory. PLoS Comp. Biol. 4, e1000171 (2008).

    Article 

    Google Scholar 

  • Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem