in

Spatial memory predicts home range size and predation risk in pheasants

[adace-ad id="91168"]
  • Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).

    Article 

    Google Scholar 

  • Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 346 (1943).

    Article 

    Google Scholar 

  • Darwin, C. On the Origin of Species by Means of Natural Selection (D. Appleton Co., 1859).

  • Merkle, J., Fortin, D. & Morales, J. M. A memory‐based foraging tactic reveals an adaptive mechanism for restricted space use. Ecol. Lett. 17, 924–931 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).

    Article 

    Google Scholar 

  • Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 365, 2289–2301 (2010).

    Article 

    Google Scholar 

  • Lewis, M. A. & Murray, J. D. Modelling territoriality and wolf-deer interactions. Nature 366, 738–740 (1993).

    Article 

    Google Scholar 

  • Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).

    Article 
    CAS 

    Google Scholar 

  • Wang, M. & Grimm, V. Home range dynamics and population regulation: an individual-based model of the common shrew Sorex araneus. Ecol. Modell. 205, 397–409 (2007).

    Article 

    Google Scholar 

  • Moorcroft, P. R., Lewis, M. A. & Crabtree, R. L. Mechanistic home range models capture spatial patterns and dynamics of coyote territories in Yellowstone. Proc. R. Soc. B: Biol. Sci. 273, 1651–1659 (2006).

    Article 

    Google Scholar 

  • Powell, R. A. in Research Techniques in Animal Ecology Vol. 65 (eds. Boitani, L. & Fuller, T. K.) 599 (Columbia Univ. Press, 2000).

  • Spencer, W. D. Home ranges and the value of spatial information. J. Mammal. 93, 929–947 (2012).

    Article 

    Google Scholar 

  • Bracis, C., Gurarie, E., Van Moorter, B. & Goodwin, R. A. Memory effects on movement behavior in animal foraging. PLoS ONE 10, e0136057 (2015).

    Article 

    Google Scholar 

  • Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).

    Article 

    Google Scholar 

  • Powell, R. A. & Mitchell, M. S. What is a home range? J. Mammal. 93, 948–958 (2012).

    Article 

    Google Scholar 

  • Stamps, J. Motor learning and the value of familiar space. Am. Nat. 146, 41–58 (1995).

    Article 

    Google Scholar 

  • Gautestad, A. O. & Mysterud, I. Spatial memory, habitat auto-facilitation and the emergence of fractal home range patterns. Ecol. Modell. 221, 2741–2750 (2010).

    Article 

    Google Scholar 

  • Gautestad, A. O. & Mysterud, I. Intrinsic scaling complexity in animal dispersion and abundance. Am. Nat. 165, 44–55 (2005).

    Article 

    Google Scholar 

  • Merkle, J. A., Potts, J. R. & Fortin, D. Energy benefits and emergent space use patterns of an empirically parameterized model of memory‐based patch selection. Oikos 126, 185–196 (2017).

  • Schlägel, U. E. & Lewis, M. A. Detecting effects of spatial memory and dynamic information on animal movement decisions. Methods Ecol. Evolution 5, 1236–1246 (2014).

    Article 

    Google Scholar 

  • Van Moorter, B. et al. Memory keeps you at home: a mechanistic model for home range emergence. Oikos 118, 641–652 (2009).

    Article 

    Google Scholar 

  • Riotte-Lambert, L., Benhamou, S. & Chamaillé-Jammes, S. How memory-based movement leads to nonterritorial spatial segregation. Am. Naturalist 185, E103–E116 (2015).

    Article 

    Google Scholar 

  • Marchand, P. et al. Combining familiarity and landscape features helps break down the barriers between movements and home ranges in a non‐territorial large herbivore. J. Anim. Ecol. 86, 371–383 (2017).

    Article 

    Google Scholar 

  • Gautestad, A. O., Loe, L. E. & Mysterud, A. Inferring spatial memory and spatiotemporal scaling from GPS data: comparing red deer Cervus elaphus movements with simulation models. J. Anim. Ecol. 82, 572–586 (2013).

    Article 

    Google Scholar 

  • Ranc, N., Cagnacci, F. & Moorcroft, P. R. Memory drives the formation of animal home ranges: evidence from a reintroduction. Ecol. Lett. 25, 716–728 (2022).

    Article 

    Google Scholar 

  • Ranc, N., Moorcroft, P. R., Ossi, F. & Cagnacci, F. Experimental evidence of memory-based foraging decisions in a large wild mammal. Proc. Natl Acad. Sci. USA 118, e2014856118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Potts, J. R. & Lewis, M. A. A mathematical approach to territorial pattern formation. Am. Math. Monthly 121, 754–770 (2014).

    Article 

    Google Scholar 

  • Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford Univ. Press, 2009).

  • van Asselen, M. et al. Brain areas involved in spatial working memory. Neuropsychologia 44, 1185–1194 (2006).

    Article 

    Google Scholar 

  • Paul, C., Magda, G. & Abel, S. Spatial memory: theoretical basis and comparative review on experimental methods in rodents. Behav. Brain Res. 203, 151–164 (2009).

    Article 

    Google Scholar 

  • Boratyński, Z. Energetic constraints on mammalian home-range size. Funct. Ecol. 34, 468–474 (2020).

    Article 

    Google Scholar 

  • Tamburello, N., Côté, I. M. & Dulvy, N. K. Energy and the scaling of animal space use. Am. Naturalist 186, 196–211 (2015).

    Article 

    Google Scholar 

  • McNab, B. K. Bioenergetics and the determination of home range size. Am. Naturalist 97, 133–140 (1963).

    Article 

    Google Scholar 

  • McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Naturalist 116, 106–124 (1980).

    Article 

    Google Scholar 

  • Fokidis, H. B., Risch, T. S. & Glenn, T. C. Reproductive and resource benefits to large female body size in a mammal with female-biased sexual size dimorphism. Anim. Behav. 73, 479–488 (2007).

    Article 

    Google Scholar 

  • Saïd, S. et al. What shapes intra-specific variation in home range size? A case study of female roe deer. Oikos 118, 1299–1306 (2009).

    Article 

    Google Scholar 

  • Schradin, C. et al. Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study. Anim. Behav. 79, 195–203 (2010).

    Article 

    Google Scholar 

  • Dröge, E., Creel, S., Becker, M. S. & M’soka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evolution 1, 1123–1128 (2017).

    Article 

    Google Scholar 

  • Croston, R., Branch, C., Kozlovsky, D., Dukas, R. & Pravosudov, V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459 (2015).

    Article 

    Google Scholar 

  • Ashton, B. J., Ridley, A. R., Edwards, E. K. & Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 554, 364–367 (2018).

    Article 
    CAS 

    Google Scholar 

  • Madden, J. R., Langley, E. J. G., Whiteside, M. A., Beardsworth, C. E. & Van Horik, J. O. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos. Trans. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rstb.2017.0297 (2018).

  • Sonnenberg, B. R., Branch, C. L., Pitera, A. M., Bridge, E. & Pravosudov, V. V. Natural selection and spatial cognition in wild food-caching mountain chickadees. Curr. Biol. 29, 670–676 (2019).

    Article 
    CAS 

    Google Scholar 

  • Shaw, R. C., MacKinlay, R. D., Clayton, N. S. & Burns, K. C. Memory performance influences male reproductive success in a wild bird. Curr. Biol. 29, 1498–1502.e3 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gehr, B. et al. Stay home, stay safe—site familiarity reduces predation risk in a large herbivore in two contrasting study sites. J. Anim. Ecol. 89, 1329–1339 (2020).

    Article 

    Google Scholar 

  • Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).

    Article 
    CAS 

    Google Scholar 

  • Willems, E. P. & Hill, R. A. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology 90, 546–555 (2009).

    Article 

    Google Scholar 

  • Gaynor, K. M., Brown, J. S., Middleton, A. D., Power, M. E. & Brashares, J. S. Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol. Evolution 34, 355–368 (2019).

    Article 

    Google Scholar 

  • Bose, S. et al. Implications of fidelity and philopatry for the population structure of female black-tailed deer. Behav. Ecol. 28, 983–990 (2017).

    Article 

    Google Scholar 

  • Forrester, T. D., Casady, D. S. & Wittmer, H. U. Home sweet home: fitness consequences of site familiarity in female black-tailed deer. Behav. Ecol. Sociobiol. 69, 603–612 (2015).

    Article 

    Google Scholar 

  • Magrath, R. D., Haff, T. M., Fallow, P. M. & Radford, A. N. Eavesdropping on heterospecific alarm calls: from mechanisms to consequences. Biol. Rev. 90, 560–586 (2015).

    Article 

    Google Scholar 

  • Skelhorn, J. & Rowe, C. Cognition and the evolution of camouflage. Proc. R. Soc. B: Biol. Sci. 283, 20152890 (2016).

    Article 

    Google Scholar 

  • Dickinson, A. Associative learning and animal cognition. Philos. Trans. R. Soc. B: Biol. Sci. 367, 2733–2742 (2012).

    Article 

    Google Scholar 

  • Baddeley, A. D. & Lieberman, K. in Exploring Working Memory 206–223 (Routledge, 2017).

  • Olton, D. S. & Samuelson, R. J. Remembrance of places passed: spatial memory in rats. J. Exp. Psychol. Anim. Behav. Process. 2, 97–116 (1976).

    Article 

    Google Scholar 

  • Lashley, K. S. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain (Univ. Chicago Press, 1929).

  • O’keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978).

  • Beardsworth, C. E. et al. Is habitat selection in the wild shaped by individual-level cognitive biases in orientation strategy? Ecol. Lett. 24, 751–760 (2021).

    Article 

    Google Scholar 

  • Rowe, C. & Healy, S. D. Measuring variation in cognition. Behav. Ecol. 25, 1287–1292 (2014).

    Article 

    Google Scholar 

  • Warner, R. E. Use of cover by pheasant broods in east-central Illinois. J. Wildl. Manag. 43, 334 (1979).

    Article 

    Google Scholar 

  • Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).

    Article 
    CAS 

    Google Scholar 

  • Weiser, A. W. et al. Characterizing the accuracy of a self-synchronized reverse-GPS wildlife localization system. In Proc. 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016 1–12 (IEEE, 2016).

  • Nathan, R. et al. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780 (2022).

    Article 
    CAS 

    Google Scholar 

  • Beardsworth, C. E. et al. Validating ATLAS: a regional-scale high-throughput tracking system. Methods Ecol. Evolution 13, 1990–2004 (2022).

    Article 

    Google Scholar 

  • Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evolution 7, 1124–1132 (2016).

    Article 

    Google Scholar 

  • Clutton‐Brock, T. H. & Harvey, P. H. Primates, brains and ecology. J. Zool. 190, 309–323 (1980).

    Article 

    Google Scholar 

  • Avgar, T. et al. Space-use behaviour of woodland caribou based on a cognitive movement model. J. Anim. Ecol. 84, 1059–1070 (2015).

    Article 

    Google Scholar 

  • Laundré, J. W., Hernández, L. & Ripple, W. J. The landscape of fear: ecological implications of being afraid. Open Ecol. J. 3, 1–7 (2010).

    Article 

    Google Scholar 

  • Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton Univ. Press, 2019).

  • Beauchamp, G. Animal Vigilance: Monitoring Predators and Competitors. Animal Vigilance: Monitoring Predators and Competitors (Elsevier, 2015).

  • Langley, E. J. G. et al. Heritability and correlations among learning and inhibitory control traits. Behav. Ecol. 31, 798–806 (2020).

    Article 

    Google Scholar 

  • Chen, J., Zou, Y., Sun, Y.-H. & Ten Cate, C. Problem-solving males become more attractive to female budgerigars. Science 363, 166–167 (2019).

    Article 
    CAS 

    Google Scholar 

  • Vale, R., Evans, D. A. & Branco, T. Rapid spatial learning controls instinctive defensive behavior in mice. Curr. Biol. 27, 1342–1349 (2017).

    Article 
    CAS 

    Google Scholar 

  • Burt de Perera, T. & Guilford, T. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392 (2008).

    Article 

    Google Scholar 

  • Font, E. Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis). Behav. Procs. 169, 103963 (2019).

    Article 

    Google Scholar 

  • Senar, J. & Pascual, J. Keel and tarsus length may provide a good predictor of avian body size. Ard.-Wageningen 85, 269–274 (1997).

    Google Scholar 

  • Lavielle, M. Detection of multiple changes in a sequence of dependent variables. Stoch. Process. Appl. 83, 79–102 (1999).

    Article 

    Google Scholar 

  • Calenge, C. The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).

    Article 

    Google Scholar 

  • Millspaugh, J. J. A Manual for Wildlife Radio Tagging Robert E. Kenward. The Auk 118 (Academic Press, 2001).

  • Gupte, P. R. et al. A guide to pre-processing high-throughput animal tracking data. J. Anim. Ecol. 91, 287–307 (2022).

    Article 

    Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • Grahn, M., Göransson, G. & Von Schantz, T. Territory acquisition and mating success in pheasants, Phasianus colchicus: an experiment. Anim. Behav. 46, 721–730 (1993).

    Article 

    Google Scholar 

  • Ridley, M. W. & Hill, D. A. Social organization in the pheasant (Phasianus colchicus): harem formation, mate selection and the role of mate guarding. J. Zool. 211, 619–630 (1987).

    Article 

    Google Scholar 

  • Gompper, M. E. & Gittleman, J. L. Home range scaling: intraspecific and comparative trends. Oecologia 87, 343–348 (1991).

    Article 

    Google Scholar 

  • Fisher, R. A. in Breakthroughs in Statistics (eds Kotz, S. & Johnson, N. L.) 66–70 (Springer, 1992).

  • Barton, K. MuMIn: Multi-Model Inference (cran.r-project.org, 2022).

  • Nakagawa, S. A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav. Ecol. 15, 1044–1045 (2004).

    Article 

    Google Scholar 

  • Heathcote, R. Data for ‘Spatial memory predicts home range size and predation risk in pheasants’ nature ecology and evolution. Mendeley Data https://doi.org/10.17632/m89226xg6p.1 (2022).


  • Source: Ecology - nature.com

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland