in

Top-down and bottom-up effects modulate species co-existence in a context of top predator restoration

[adace-ad id="91168"]
  • Alston, J. M. et al. Reciprocity in restoration ecology: When might large carnivore reintroduction restore ecosystems?. Biol. Conserv. 234, 82–89 (2019).

    Article 

    Google Scholar 

  • Ripple, W. J. & Beschta, R. L. Large predators limit herbivore densities in northern forest ecosystems. Eur. J. Wildl. Res. 58, 733–742 (2012).

    Article 

    Google Scholar 

  • Estes, J. A. & Duggins, D. O. Sea otters and kelp forests in Alaska: Generality and variation in a community ecological paradigm. Ecol. Monogr. 65, 75–100 (1995).

    Article 

    Google Scholar 

  • Schmitz, O. J., Beckerman, A. P. & O’Brien, K. M. Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions. Ecology 78, 1388–1399 (1997).

    Article 

    Google Scholar 

  • Power, M. E. Top-down and bottom-up forces in food webs: Do plants have primacy. Ecology 73, 733–746 (1992).

    Article 

    Google Scholar 

  • Travers, T., Lea, M. A., Alderman, R., Terauds, A. & Shaw, J. Bottom-up effect of eradications: The unintended consequences for top-order predators when eradicating invasive prey. J. Appl. Ecol. 58, 801–811 (2021).

    Article 

    Google Scholar 

  • Stoessel, M., Elmhagen, B., Vinka, M., Hellström, P. & Angerbjörn, A. The fluctuating world of a tundra predator guild: bottom-up constraints overrule top-down species interactions in winter. Ecography (Cop.) 42, 488–499 (2019).

    Article 

    Google Scholar 

  • Wolf, C. & Ripple, W. J. Rewilding the world ’s large carnivores. R. Soc. Open Sci. 5, 172235 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krofel, M. & Jerina, K. Mind the cat: Conservation management of a protected dominant scavenger indirectly affects an endangered apex predator. Biol. Conserv. 197, 40–46 (2016).

    Article 

    Google Scholar 

  • Prugh, L. R. & Sivy, K. J. Enemies with benefits: Integrating positive and negative interactions among terrestrial carnivores. Ecol. Lett. https://doi.org/10.1111/ele.13489 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Caro, T. M. & Stoner, C. J. The potential for interspecific competition among African carnivores. Biol. Conserv. 110, 67–75 (2003).

    Article 

    Google Scholar 

  • Linnell, J. D. C. & Strand, O. Interference interactions, co-existence and conservation of mammalian carnivores. Divers. Distrib. 6, 169–176 (2000).

    Article 

    Google Scholar 

  • Newsome, T. M. et al. Top predators constrain mesopredator distributions. Nat. Commun. 8, 15469 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crooks, K. & Soulé, M. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fedriani, J. M., Fuller, T. K., Sauvajot, R. M. & York, E. C. Competition and intraguild predation among three sympatric carnivores. Oecologia 125, 258–270 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Monterroso, P., Díaz-Ruiz, F., Lukacs, P. M., Alves, P. C. & Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology 101, 1–16 (2020).

    Article 

    Google Scholar 

  • Karanth, K. U. et al. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proc. R. Soc. B Biol. Sci. 284, 20161860 (2017).

    Article 

    Google Scholar 

  • Ferreiro-Arias, I., Isla, J., Jordano, P. & Benítez-López, A. Fine-scale coexistence between Mediterranean mesocarnivores is mediated by spatial, temporal, and trophic resource partitioning. Ecol. Evol. 11, 15520–15533 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Bitetti, M. S., De Angelo, C. D., Di Blanco, Y. E. & Paviolo, A. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36, 403–412 (2010).

    Article 
    ADS 

    Google Scholar 

  • Carvalho, J. C. & Gomes, P. Feeding resource partitioning among four sympatric carnivores in the Peneda-Gerês National Park (Portugal). J. Zool. 263, 275–283 (2004).

    Article 

    Google Scholar 

  • Gil-Sánchez, J. M., Mañá-Varela, B., Herrera-Sánchez, F. J. & Urios, V. Spatio-temporal ecology of a carnivore community in middle atlas NW of Morocco. Zoology 146, 125904 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Monterroso, P., Alves, P. C. & Ferreras, P. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: Implications for species coexistence. Behav. Ecol. Sociobiol. 68, 1403–1417 (2014).

    Article 

    Google Scholar 

  • Gallagher, A. J., Creel, S., Wilson, R. P. & Cooke, S. J. Energy landscapes and the landscape of fear. Trends Ecol. Evol. 32, 88–96 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Sergio, F. & Hiraldo, F. Intraguild predation in raptor assemblages: A review. Ibis 150, 132–145 (2008).

    Article 

    Google Scholar 

  • Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Conserv. 238, 108234 (2019).

    Article 

    Google Scholar 

  • Palomares, F., Ferreras, P., Fedriani, J. M. & Delibes, M. Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain. J. Appl. Ecol. 33, 5–13 (1996).

    Article 

    Google Scholar 

  • Wooster, E. I. F., Ramp, D., Lundgren, E. J., O’Neill, A. J. & Wallach, A. D. Red foxes avoid apex predation without increasing fear. Behav. Ecol. 32, 895–902 (2021).

    Article 

    Google Scholar 

  • Santos, F. et al. Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS ONE 14, 1–23 (2019).

    Article 

    Google Scholar 

  • Barrientos, R. & Virgós, E. Reduction of potential food interference in two sympatric carnivores by sequential use of shared resources. Acta Oecol. 30, 107–116 (2006).

    Article 
    ADS 

    Google Scholar 

  • MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).

    Article 

    Google Scholar 

  • López-Martín, J. M. Comparison of feeding behaviour between stone marten and common genet: living in coexistence. Martes Carniv. Communities 137–155 (2006).

  • Sarmento, P. et al. Adapt or perish: How the Iberian lynx reintroduction affects fox abundance and behaviour. Hystrix Ital. J. Mammal. 32, 48–54 (2021).

    Google Scholar 

  • Forsyth, D. M., Ramsey, D. S. L. & Woodford, L. P. Estimating abundances, densities, and interspecific associations in a carnivore community. J. Wildl. Manag. 83, 1090–1102 (2019).

    Article 

    Google Scholar 

  • Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 1–9 (2016).

    Article 

    Google Scholar 

  • Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Santos-Reis, M. et al. Relationships between stone martens, genets and cork oak woodlands in Portugal. Martens Fish. Hum.-Altered Environ. Int. Perspect. https://doi.org/10.1007/0-387-22691-5_7 (2004).

    Article 

    Google Scholar 

  • Goszczyński, J., Posłuszny, M., Pilot, M. & Gralak, B. Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can. J. Zool. 85, 239–249 (2007).

    Article 
    ADS 

    Google Scholar 

  • Díaz-Ruiz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).

    Article 

    Google Scholar 

  • Zanón Martínez, J. I., Seoane, J., Kelly, M. J., Sarasola, J. H. & Travaini, A. Assessing carnivore spatial co-occurrence and temporal overlap in the face of human interference in a semi-arid forest. Ecol. Appl. https://doi.org/10.1002/eap.2482 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Allen, M. L., Sibarani, M. C., Utoyo, L. & Krofel, M. Terrestrial mammal community richness and temporal overlap between tigers and other carnivores in Bukit Barisan Selatan National Park Sumatra. Anim. Biodivers. Conserv. 1, 97–107 (2020).

    Article 

    Google Scholar 

  • Vilella, M., Ferrandiz-Rovira, M. & Sayol, F. Coexistence of predators in time: Effects of season and prey availability on species activity within a Mediterranean carnivore guild. Ecol. Evol. 10, 11408–11422 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Santos, N. et al. Protein metabolism and physical fitness are physiological determinants of body condition in Southern European carnivores. Sci. Rep. 10, 1–11 (2020).

    Article 

    Google Scholar 

  • Ferreras, P., Travaini, A., Cristina Zapata, S. & Delibes, M. Short-term responses of mammalian carnivores to a sudden collapse of rabbits in Mediterranean Spain. Basic Appl. Ecol. 12, 116–124 (2011).

    Article 

    Google Scholar 

  • Moreno, S. Reproduction of Garden Dormouse Eliomys quercinus lusitanicus, in southwest Spain. Mammalia 52, 401–408 (1988).

    Article 

    Google Scholar 

  • Bakaloudis, D. E., Vlachos, C. G., Papakosta, M. A., Bontzorlos, V. A. & Chatzinikos, E. N. Diet composition and feeding strategies of the stone marten (Martes foina) in a typical mediterranean ecosystem. Sci. World J. 2012, 1–11 (2012).

    Article 

    Google Scholar 

  • Pereira, L. M., Owen-Smith, N. & Moleón, M. Facultative predation and scavenging by mammalian carnivores: Seasonal, regional and intra-guild comparisons. Mamm. Rev. 44, 44–55 (2014).

    Article 

    Google Scholar 

  • Gil-Sánchez, J. M., Ballesteros-Duperón, E. & Bueno-Segura, J. F. Feed ing ecology of the Iberian lynx Lynx pardinus in east ern. Acta Theriol. (Warsz) 51, 85–90 (2006).

    Article 

    Google Scholar 

  • Krofel, M., Huber, D. & Kos, I. Diet of Eurasian lynx Lynx lynx in the northern Dinaric Mountains (Slovenia and Croatia). Acta Theriol. (Warsz) 56, 315–322 (2011).

    Article 

    Google Scholar 

  • Virgós, E., Baniandrés, N., Burgos, T. & Recio, M. R. Intraguild predation by the eagle owl determines the space use of a mesopredator carnivore. Diversity 12, 13–15 (2020).

    Article 

    Google Scholar 

  • Gordon, C. E., Feit, A., Grüber, J. & Letnic, M. Mesopredator suppression by an apex predator alleviates the risk of predation perceived by small prey. Proc. R. Soc. B Biol. Sci. 282, 20142870 (2015).

    Article 

    Google Scholar 

  • Draper, J. P., Young, J. K., Schupp, E. W., Beckman, N. G. & Atwood, T. B. Frugivory and seed dispersal by carnivorans. Front. Ecol. Evol. 10, 864864 (2022).

    Article 

    Google Scholar 

  • González-Varo, J. P., López-Bao, J. V. & Guitián, J. Functional diversity among seed dispersal kernels generated by carnivorous mammals. J. Anim. Ecol. 82, 562–571 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Virgós, E., Llorente, M. & Cortés, Y. Geographical variation in genet (Genetta genetta L.) diet: A literature review. Mamm. Rev. 29, 117–126 (1999).

    Article 

    Google Scholar 

  • Fedriani, J. M., Ayllón, D., Wiegand, T. & Grimm, V. Intertwined effects of defaunation, increased tree mortality and density compensation on seed dispersal. Ecography (Cop.) 43, 1352–1363 (2020).

    Article 

    Google Scholar 

  • Burgos, T. et al. Predation risk can modify the foraging behaviour of frugivorous carnivores: Implications of rewilding apex predators for plant–animal mutualisms. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13682 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Escribano-Ávila, G. et al. Spanish juniper gain expansion opportunities by counting on a functionally diverse dispersal assemblage community. Ecol. Evol. 3, 3751–3763 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gazzola, A. & Balestrieri, A. Nutritional ecology provides insights into competitive interactions between closely related Martes species. Mamm. Rev. 50, 82–90 (2020).

    Article 

    Google Scholar 

  • Simón, M. A. et al. Diez años de conservación del lince ibérico, 326 (2012).

  • Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Elsevier, 2014).

    Google Scholar 

  • Rodríguez, A. & Calzada, J. Lynx pardinus (errata version published in 2020). The IUCN Red List of Threatened Species 2015. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T12520A174111773.en (Accessed 27 January 2023) (2015).

  • Gil-Sánchez, J. M. et al. The use of camera trapping for estimating Iberian lynx (Lynx pardinus) home ranges. Eur. J. Wildl. Res. 57, 1203–1211 (2011).

    Article 

    Google Scholar 

  • Gerber, B. D., Karpanty, S. M. & Kelly, M. J. Evaluating the potential biases in carnivore capture-recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Popul. Ecol. 54, 43–54 (2012).

    Article 

    Google Scholar 

  • Jiménez, J., Díaz-Ruiz, F., Monterroso, P., Tobajas, J. & Ferreras, P. Occupancy data improves parameter precision in spatial capture–recapture models. Ecol. Evol. https://doi.org/10.1002/ece3.9250 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreras, P., DÍaz-Ruiz, F. & Monterroso, P. Improving mesocarnivore detectability with lures in camera-trapping studies. Wildl. Res. 45, 505–517 (2018).

    Article 

    Google Scholar 

  • Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Jiménez, J. et al. Estimating carnivore community structures. Sci. Rep. https://doi.org/10.1038/srep41036 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Genovesi, P., Sinibaldi, I. & Boitani, L. Spacing patterns and territoriality of the stone marten. Can. J. Zool. 75, 1966–1971 (1997).

    Article 

    Google Scholar 

  • Royle, J. A. & Converse, S. J. Hierarchical spatial capture-recapture models: Modelling population density in stratified populations. Methods Ecol. Evol. 5, 37–43 (2014).

    Article 

    Google Scholar 

  • Palomares, F. & Delibes, M. Spatio-temporal ecology and behavior of European genets in southwestern Spain. J. Mammal. 75, 714–724 (1994).

    Article 

    Google Scholar 

  • Camps, D. Jineta – Genetta genetta. En Encicl. Virtual los Vertebr. Españoles. Salvador. A., Barja, I. (Eds.). Mus. Nac. Ciencias Nat. Madrid. https://www.vertebradosibericos.org/ (2017).

  • Efford, M. Density estimation in live-trapping studies. Oikos 106, 598–610 (2004).

    Article 

    Google Scholar 

  • de Valpine, P. et al. Programming with models: Writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).

    Article 
    MathSciNet 

    Google Scholar 

  • NIMBLE Development Team. NIMBLE user manual (2017).

  • Morin, D. J., Waits, L. P., McNitt, D. C. & Kelly, M. J. Efficient single-survey estimation of carnivore density using fecal DNA and spatial capture-recapture: A bobcat case study. Popul. Ecol. 60, 197–209 (2018).

    Article 

    Google Scholar 

  • Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).

    Book 

    Google Scholar 

  • Weitzman, M. S. Measure of the Overlap of Income Distribution of White and Negro Families in the United States. Technical report No 22 (1970).

  • Jammalamadaka, S. R. & Sengupta, A. Topics in Circular Statistics. Series on Multivariate Analyisis Vol. 5 (World Scientific, 2001).

    Book 

    Google Scholar 

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).

    Book 
    MATH 

    Google Scholar 

  • Mielke, P. W., Berry, K. J. & Johnson, E. S. Multi-response permutation proccedures for a priori classifications. Commun. Stat. Theory Methods 5, 1409–1424 (1976).

    Article 
    MATH 

    Google Scholar 

  • Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. lme4: Linear mixed-effects models. R Packag. version 1.1.21 (2020).

  • Barton, K. Package “MuMIn: Multi-model inference” for R. R Packag. Version 1.9.5 45 (2013).


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem