in

Agricultural drought over water-scarce Central Asia aggravated by internal climate variability

[adace-ad id="91168"]
  • Dai, A. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change 144, 519–533 (2017).

    Article 

    Google Scholar 

  • Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    Article 

    Google Scholar 

  • Jiang, J. et al. Tracking moisture sources of precipitation over central Asia: a study based on the water-source-tagging method. J. Clim. 33, 10339–10355 (2020).

    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Li, Z., Chen, Y., Fang, G. & Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 7, 1316 (2017).

    Article 

    Google Scholar 

  • Li, Z., Chen, Y., Li, W., Deng, H. & Fang, G. Potential impacts of climate change on vegetation dynamics in Central Asia. J. Geophys. Res. Atmos. 120, 12345–12356 (2015).

    Article 

    Google Scholar 

  • Deng, H. & Chen, Y. Influences of recent climate change and human activities on water storage variations in Central Asia. J. Hydrol. 544, 46–57 (2017).

    Article 

    Google Scholar 

  • Seager, R., Nakamura, J. & Ting, M. Mechanisms of seasonal soil moisture drought onset and termination in the southern Great Plains. J. Hydrometeorol. 20, 751–771 (2019).

    Article 

    Google Scholar 

  • Teuling, A. J. et al. Evapotranspiration amplifies European summer drought. Geophys. Res. Lett. 40, 2071–2075 (2013).

    Article 

    Google Scholar 

  • Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article 

    Google Scholar 

  • Barlow, M. & Hoell, A. Drought in the Middle East and Central–Southwest Asia during winter 2013/14. Bull. Am. Meteorol. Soc. 96, S71–S76 (2015).

    Article 

    Google Scholar 

  • Peng, D., Zhou, T., Zhang, L. & Zou, L. Detecting human influence on the temperature changes in Central Asia. Clim. Dyn. 53, 4553–4568 (2019).

    Article 

    Google Scholar 

  • Barlow, M. et al. A review of drought in the Middle East and Southwest Asia. J. Clim. 29, 8547–8574 (2016).

    Article 

    Google Scholar 

  • Hoell, A., Funk, C. & Barlow, M. The forcing of Southwestern Asia teleconnections by low-frequency sea surface temperature variability during boreal winter. J. Clim. 28, 1511–1526 (2015).

    Article 

    Google Scholar 

  • Jiang, J. & Zhou, T. Human‐induced rainfall reduction in drought‐prone northern central Asia. Geophys. Res. Lett. 48, e2020GL092156 (2021).

    Article 

    Google Scholar 

  • Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 42, 6819–6828 (2015).

    Article 

    Google Scholar 

  • Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article 

    Google Scholar 

  • Samaniego, L. et al. Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Change 8, 421–426 (2018).

    Article 

    Google Scholar 

  • García-Herrera, R. et al. The European 2016/17 drought. J. Clim. 32, 3169–3187 (2019).

    Article 

    Google Scholar 

  • Mueller, B. & Zhang, X. Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Clim. Change 134, 255–267 (2016).

    Article 

    Google Scholar 

  • Gu, X. et al. Attribution of global soil moisture drying to human activities: a quantitative viewpoint. Geophys. Res. Lett. 46, 2573–2582 (2019).

    Article 

    Google Scholar 

  • Coats, S. et al. Internal ocean–atmosphere variability drives megadroughts in western North America. Geophys. Res. Lett. 43, 9886–9894 (2016).

    Article 

    Google Scholar 

  • Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article 

    Google Scholar 

  • Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).

    Article 

    Google Scholar 

  • Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779 (2012).

    Article 

    Google Scholar 

  • Murphy, J. M. et al. Transient climate changes in a perturbed parameter ensemble of emissions-driven Earth system model simulations. Clim. Dyn. 43, 2855–2885 (2014).

    Article 

    Google Scholar 

  • Huang, X. et al. The recent decline and recovery of Indian summer monsoon rainfall: relative roles of external forcing and internal variability. J. Clim. 33, 5035–5060 (2020).

    Article 

    Google Scholar 

  • Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0442(1997)0102.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0442%281997%29010%3C1004%3AELIV%3E2.0.CO%3B2″ aria-label=”Article reference 29″ data-doi=”10.1175/1520-0442(1997)0102.0.CO;2″>Article 

    Google Scholar 

  • Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Article 

    Google Scholar 

  • Henley, B. J. et al. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article 

    Google Scholar 

  • Wu, L., Ma, X., Dou, X., Zhu, J. & Zhao, C. Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia. Sci. Total Environ. 796, 149055 (2021).

    Article 

    Google Scholar 

  • FAO. Drought Characteristics and Management in Central Asia and Turkey (FAO Water Reports, 2017).

  • Cai, W., Cowan, T., Briggs, P. & Raupach, M. Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys. Res. Lett. 36, L21709 (2009).

    Article 

    Google Scholar 

  • Kidron, G. J. & Kronenfeld, R. Temperature rise severely affects pan and soil evaporation in the Negev Desert. Ecohydrology 9, 1130–1138 (2016).

    Article 

    Google Scholar 

  • Xu, Y., Zhang, X., Hao, Z., Singh, V. P. & Hao, F. Characterization of agricultural drought propagation over China based on bivariate probabilistic quantification. J. Hydrol. 598, 126194 (2021).

    Article 

    Google Scholar 

  • Bae, H. et al. Characteristics of drought propagation in South Korea: relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards 99, 1–16 (2019).

    Article 

    Google Scholar 

  • Wang, W., Ertsen, M. W., Svoboda, M. D. & Hafeez, M. Propagation of drought: from meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 127897 (2016).

    Article 

    Google Scholar 

  • Hoell, A., Funk, C., Barlow, M. & Cannon, F. in Climate Extremes: Patterns and Mechanisms (eds Wang, S. et al.) 283–298 (American Geophysical Union, 2017).

  • Wu, M. et al. A very likely weakening of Pacific Walker Circulation in constrained near-future projections. Nat. Commun. 12, 6502 (2021).

    Article 

    Google Scholar 

  • Hoell, A., Barlow, M., Cannon, F. & Xu, T. Oceanic origins of historical southwest Asia precipitation during the boreal cold season. J. Clim. 30, 2885–2903 (2017).

    Article 

    Google Scholar 

  • Jiang, J., Zhou, T., Chen, X. & Wu, B. Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability. J. Clim. 34, 7541–7553 (2021).

    Article 

    Google Scholar 

  • Barlow, M. A. & Tippett, M. K. Variability and predictability of Central Asia river flows: antecedent winter precipitation and large-scale teleconnections. J. Hydrometeorol. 9, 1334–1349 (2008).

    Article 

    Google Scholar 

  • Hoell, A., Barlow, M. & Saini, R. Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Clim. 26, 8850–8867 (2013).

    Article 

    Google Scholar 

  • Rana, S., McGregor, J. & Renwick, J. Dominant modes of winter precipitation variability over Central Southwest Asia and inter-decadal change in the ENSO teleconnection. Clim. Dyn. https://doi.org/10.1007/s00382-019-04889-9 (2019).

    Article 

    Google Scholar 

  • Jiang, J., Zhou, T., Chen, X. & Zhang, L. Future changes in precipitation over Central Asia based on CMIP6 projections. Environ. Res. Lett. 15, 054009 (2020).

    Article 

    Google Scholar 

  • Huang, X. et al. South Asian summer monsoon projections constrained by the interdecadal Pacific oscillation. Sci. Adv. 6, eaay6546 (2020).

    Article 

    Google Scholar 

  • Varis, O. Resources: curb vast water use in Central Asia. Nature 514, 27–29 (2014).

    Article 

    Google Scholar 

  • Farah, P. in ENERGY: POLICY, LEGAL AND SOCIAL-ECONOMIC ISSUES UNDER THE DIMENSIONS OF SUSTAINABILITY AND SECURITY (eds Farah, P. & Rossi, P.) 179–193 (Imperial College Press & World Scientific Publishing, 2015).

  • Wang, X., Chen, Y., Li, Z., Fang, G. & Wang, Y. Development and utilization of water resources and assessment of water security in Central Asia. Agric. Water Manag. 240, 106297 (2020).

    Article 

    Google Scholar 

  • Peng, D., Zhou, T., Zhang, L., Zhang, W. & Chen, X. Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 °C less global warming. Clim. Dyn. 54, 543–560 (2020).

    Article 

    Google Scholar 

  • Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).

    Article 

    Google Scholar 

  • Zhao, T. & Dai, A. CMIP6 model-projected hydroclimatic and drought changes and their causes in the 21st century. J. Clim. https://doi.org/10.1175/JCLI-D-21-0442.1 (2021).

  • Balsamo, G. et al. ERA-Interim/Land: a global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 19, 389–407 (2015).

    Article 

    Google Scholar 

  • Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article 

    Google Scholar 

  • Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925 (2017).

    Article 

    Google Scholar 

  • Preimesberger, W., Scanlon, T., Su, C.-H., Gruber, A. & Dorigo, W. Homogenization of structural breaks in the global ESA CCI soil moisture multisatellite climate data record. IEEE Trans. Geosci. Remote Sens. 59, 2845–2862 (2021).

    Article 

    Google Scholar 

  • Dunn, R. J. H. et al. Development of an updated global land in situ‐based data set of temperature and precipitation extremes: HadEX3. J. Geophys. Res. Atmos. 125, e2019JD032263 (2020).

    Article 

    Google Scholar 

  • Rohde, R., Muller, R., Jacobsen, R., Perlmutter, S. & Mosher, S. Berkeley Earth temperature averaging process. Geoinf. Geostat. 1, 2 (2013).

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article 

    Google Scholar 

  • Deser, C., Simpson, I. R., McKinnon, K. A. & Phillips, A. S. The Northern Hemisphere extratropical atmospheric circulation response to ENSO: how well do we know it and how do we evaluate models accordingly? J. Clim. 30, 5059–5082 (2017).

    Article 

    Google Scholar 

  • Deser, C., Guo, R. & Lehner, F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus. Geophys. Res. Lett. 44, 7945–7954 (2017).

    Article 

    Google Scholar 

  • Henley, B. J. Pacific decadal climate variability: indices, patterns and tropical–extratropical interactions. Glob. Planet. Change 155, 42–55 (2017).

    Article 

    Google Scholar 

  • Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. Ocean. 103, 18567–18589 (1998).

    Article 

    Google Scholar 

  • Huang, B. et al. Extended reconstructed sea surface temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 

    Google Scholar 

  • Salzmann, M. & Cherian, R. On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. J. Geophys. Res. Atmos. 120, 9103–9118 (2015).

    Article 

    Google Scholar 

  • Ohlson, J. A. & Kim, S. Linear valuation without OLS: the Theil–Sen estimation approach. SSRN Electron. J. https://doi.org/10.2139/ssrn.2276927 (2013).

    Article 

    Google Scholar 

  • Mann, H. B. Nonparametric tests against trend. Econometrica 13, 245–259 (1945).

    Article 

    Google Scholar 

  • Kendall, M. G. Rank Correlation Methods (Hafner Publishing Company, 1955).


  • Source: Resources - nature.com

    Moving water and earth

    Study: Extreme heat is changing habits of daily life