More stories

  • in

    New clean air and water labs to bring together researchers, policymakers to find climate solutions

    MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) is launching the Clean Air and Water Labs, with support from Community Jameel, to generate evidence-based solutions aimed at increasing access to clean air and water.

    Led by J-PAL’s Africa, Middle East and North Africa (MENA), and South Asia regional offices, the labs will partner with government agencies to bring together researchers and policymakers in areas where impactful clean air and water solutions are most urgently needed.

    Together, the labs aim to improve clean air and water access by informing the scaling of evidence-based policies and decisions of city, state, and national governments that serve nearly 260 million people combined.

    The Clean Air and Water Labs expand the work of J-PAL’s King Climate Action Initiative, building on the foundational support of King Philanthropies, which significantly expanded J-PAL’s work at the nexus of climate change and poverty alleviation worldwide. 

    Air pollution, water scarcity and the need for evidence 

    Africa, MENA, and South Asia are on the front lines of global air and water crises. 

    “There is no time to waste investing in solutions that do not achieve their desired effects,” says Iqbal Dhaliwal, global executive director of J-PAL. “By co-generating rigorous real-world evidence with researchers, policymakers can have the information they need to dedicate resources to scaling up solutions that have been shown to be effective.”

    In India, about 75 percent of households did not have drinking water on premises in 2018. In MENA, nearly 90 percent of children live in areas facing high or extreme water stress. Across Africa, almost 400 million people lack access to safe drinking water. 

    Simultaneously, air pollution is one of the greatest threats to human health globally. In India, extraordinary levels of air pollution are shortening the average life expectancy by five years. In Africa, rising indoor and ambient air pollution contributed to 1.1 million premature deaths in 2019. 

    There is increasing urgency to find high-impact and cost-effective solutions to the worsening threats to human health and resources caused by climate change. However, data and evidence on potential solutions are limited.

    Fostering collaboration to generate policy-relevant evidence 

    The Clean Air and Water Labs will foster deep collaboration between government stakeholders, J-PAL regional offices, and researchers in the J-PAL network. 

    Through the labs, J-PAL will work with policymakers to:

    co-diagnose the most pressing air and water challenges and opportunities for policy innovation;
    expand policymakers’ access to and use of high-quality air and water data;
    co-design potential solutions informed by existing evidence;
    co-generate evidence on promising solutions through rigorous evaluation, leveraging existing and new data sources; and
    support scaling of air and water policies and programs that are found to be effective through evaluation. 
    A research and scaling fund for each lab will prioritize resources for co-generated pilot studies, randomized evaluations, and scaling projects. 

    The labs will also collaborate with C40 Cities, a global network of mayors of the world’s leading cities that are united in action to confront the climate crisis, to share policy-relevant evidence and identify opportunities for potential new connections and research opportunities within India and across Africa.

    This model aims to strengthen the use of evidence in decision-making to ensure solutions are highly effective and to guide research to answer policymakers’ most urgent questions. J-PAL Africa, MENA, and South Asia’s strong on-the-ground presence will further bridge research and policy work by anchoring activities within local contexts. 

    “Communities across the world continue to face challenges in accessing clean air and water, a threat to human safety that has only been exacerbated by the climate crisis, along with rising temperatures and other hazards,” says George Richards, director of Community Jameel. “Through our collaboration with J-PAL and C40 in creating climate policy labs embedded in city, state, and national governments in Africa and South Asia, we are committed to innovative and science-based approaches that can help hundreds of millions of people enjoy healthier lives.”

    J-PAL Africa, MENA, and South Asia will formally launch Clean Air and Water Labs with government partners over the coming months. J-PAL is housed in the MIT Department of Economics, within the School of Humanities, Arts, and Social Sciences. More

  • in

    Powering the future in Mongolia

    Nestled within the Tuul River valley and embraced by the southern Khentii Mountain Range, Ulaanbaatar (UB), Mongolia’s largest city, presents itself as an arena where nature’s forces wage an unrelenting battle against human resilience. The capital city is an icy crucible, with bone-chilling winters that plummet temperatures to an astonishing -40 degrees Fahrenheit (-40 degrees Celsius). Mongolia, often hailed with the celestial moniker of “The Land of the Eternal Blue Sky,” paradoxically succumbs to a veil of pollution and energy struggles during the winter months, obscuring the true shade of the cherished vista.

    To understand the root of these issues, MIT students from classes 22.S094 (Climate and Sustainability Systems: Decarbonizing Ulaanbaatar at Scale) and 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale) visited Mongolia to conduct on-site surveys, diving into the diverse tapestry of local life as they gleaned insight from various stakeholder groups. Setting foot on Mongolian soil on a crisp day in January, they wasted no time in shaking off the weariness of their arduous 17-hour flight, promptly embarking on a waiting bus. As they traversed the vast expanse of the countryside, their eyes were captivated by snow-laden terrain.

    That is, until a disconcerting sight unfolded — thick smog, akin to ethereal pillars, permeated the cityscape ahead. These imposing plumes emanated from the colossal smokestacks of Ulaanbaatar’s coal-fired power plants, steadfastly churning electricity and heat to fuel Mongolia’s central and district energy systems. Over 93 percent of the nation’s energy comes from coal-fired power plants, where the most considerable load is caused by household consumption. Nevertheless, with nearly half of Ulaanbaatar’s population disconnected from the central heating networks, one of Mongolia’s most significant sources of pollution comes from coal-burning stoves in the residential settlements known as the ger districts. Over the past three decades, since the democratic revolution in 1990, Mongolians have grappled with escalating concerns surrounding energy provision, accessibility, and sustainability.

    Engineers who think like anthropologists

    “We find ourselves compelled to venture on-site, engaging in direct conversations with the locals, and immersing ourselves in the fabric of daily life to uncover what we don’t know,” emphasized Michael Short, professor in MIT’s Department of Nuclear Science and Engineering and faculty lead of MIT’s NEET Climate and Sustainability Systems thread, shortly before heading to Mongolia.

    The Ulaanbaatar Project sprang from a multiyear collaboration between MIT and the National University of Mongolia (NUM). Shedding light on the matter, Professor Munkhbat Byambajav of the Department of Chemical and Biological Engineering at NUM underscored the paramount importance of mitigating environmental pollution at an economic scale to alleviate the heavy burden borne by the people.

    Class 22.S094 is offered through MIT’s New Engineering Education Transformation (NEET) program, which allows students with multidisciplinary interests to collaborate across departments within four different subject areas, or threads. In this capstone project, students consider ways to decarbonize a city like Ulaanbaatar, transitioning from burning coal briquettes to a more sustainable, energy-efficient solution, given several parameters and constraints set by the local context.

    One of the ideas students have recently explored is a thermal battery made with molten salt that can store enough energy to heat a ger for up to 12 hours with added insulation for cooling curve regulation. The Mongolian ger, meaning home, is a dome-like portable dwelling covered in felt and canvas, held together by ropes traditionally crafted of animal hair or wool. Over several semesters, students have been testing a version of their proposed idea on campus, working with a prototype that weighs around 35 pounds.

    Nathan Melenbrink, the lead instructor of NEET’s Climate and Sustainability Systems (CSS) thread, believes that the complexity of the Ulaanbaatar capstone project allows students to reject the one-way solution approach and instead consider challenges with a nonprescriptive mindset. The uniqueness of the CSS thread is that students are asked to build on the previous findings from the past cohort and iterate on their designs each year. This workflow has allowed the project to mature and advance in ways that may not be feasible within a semester schedule. When asked how the recent trip impacted the ongoing research back on campus, Melenbrink states, “In light of the recent trip to Mongolia, students are beginning to see the impact of cultural immersion and social awareness leveraging the technical scope and rigor of their work.”

    Course 21A.S01, taught by Professor Manduhai Buyandelger of the MIT Anthropology Section, proved instrumental in deepening students’ understanding of the intricate dynamics at play. She asks, “The prototype works in the lab, but does it work in real life once you factor in the challenges in the larger structures of delivery, production, and implementation in Mongolia?”

    This recognition of the social dimensions of engineering permeated the early stages of the UB project, engaging all participants, including students from MIT and NUM, professionals residing in Mongolia, and local nongovernmental organizations, fostering what Buyandelger aptly describes as “a collaboration on multiple scales: trans-disciplinary and transcontinental.” Lauren Bonilla, co-lecturer for the anthropology course, was crucial in devising the first onsite trip to Mongolia. Drawing upon her extensive ethnographic research in Mongolia that spans decades, Bonilla remarks, “To me, engineering is a highly social discipline.” She further stresses how anthro-engineering elevates the social dimensions of engineering by critically questioning the framing of problems and solutions, stating, “It draws on anthropological insights and methods, like ethnography, to bring a human face to the users of a technology and adds complexity and nuance to the social constraints that limit designs.”

    Making of khorkhog

    Amidst the frigid atmosphere, a traditional Mongolian ger stands in front of the Nuclear Science Laboratory at the National University of Mongolia, emitting warm steam from its roof. The faculty and students of NUM organize a welcoming event inside the ger, inviting everyone to partake in a khorkhog cookout. Earlier that week, a remark from the Mongolian energy representative stood out during one of the presentations: “We need powerful heat. Solar is not enough, and electricity is not enough. Mongolians need fire,” he had emphasized.

    Indeed, the culinary delight known as khorkhog demands the relentless embrace of scorching flames. The process involves a large metal jug, stones, fire, and lamb. With skillful precision, the volunteer chef places the fire-heated stones and large pieces of lamb into the cooking container, triggering a cascade of steam that fills the ger, accompanied by the sounds of sizzling and hissing. Everyone waits patiently as the cook carefully inspects the dish, keenly listening for signs of readiness. And when the time comes, a feast is shared among all, complemented by steam-cooked potatoes, freshly sliced onions, and vegetables. In this moment, the presence of fire symbolizes a profound connection with the heart of Mongolian culture, evoking a deep resonance among the gathered crowd as they partake in this cherished staple meal.

    The distance between two points

    Familiar faces form a grid on the computer screen as the standing meeting between the students in Massachusetts and Ulaanbaatar begins. Sharing the morning (evening in Mongolia) for updates has been a critical effort by both sides to stay engaged and make decisions together. NEET CSS students in Cambridge proceeded to share their latest findings.

    Lucy Nester, a nuclear science and engineering major, has been diligently working on developing a high-efficiency electrical heating solution for individual consumers. Her primary focus is leveraging the discounted electricity rates available in the ger districts and utilize existing infrastructure. Recognizing the importance of maximum flexibility in heating the brick, Nester emphasizes the “no one-size-fits-all” solution. She shares the results of her test trials, which involve both inductive and resistive heating methods, outlining the advantages and disadvantages of each approach. Despite her limited experience in electrical engineering and circuit building, Nester has impressively overcome the steep learning curve. She enthusiastically describes her UB trip as “one of the most remarkable experiences I’ve had during my time at MIT.”

    Darshdeep Grewal, a dedicated materials science and engineering major with a strong passion for data science and computation, has been diligently conducting research on convection heating using COMSOL Multiphysics. In his investigation, Grewal explores the correlation between air temperature and heating, investigates the impact of convecting air arrangement on the heating process, and examines the conditions that may contribute to overheating. Leveraging his expertise in computational workflows, Grewal presents an impressive collection of heatmap simulations derived from the extensive data accumulated by his team throughout the project. Recognizing the immense value of these simulations in modeling complex scenarios, he highlights the importance of running experiments concurrently with simulations to ensure accurate calibration of results, stating, “It’s important to stay rooted in reality.”

    Arina Khotimsky, another materials science and engineering major, has actively engaged in NEET’s Climate and Sustainability Systems thread since her sophomore year. Balancing the demands of her final semester at MIT and the upcoming review of 22.S094, Khotimsky reveals how she has seamlessly integrated her project involvement into her energy studies minor. Reflecting on her journey, she remarks, “Working on the Ulaanbaatar project has taught me the significance of taking local context into account while suggesting solutions as an engineer.” Khotimsky has been tirelessly iterating and refining the insulation box prototype, which holds the thermal battery and controls the rate at which the battery releases heat. In addition, the on-site observations have unveiled another design challenge — ensuring the insulation box functions as a secure and dependable means of transportation. 

    To “engineer” means to contrive through one’s deliberate use of skills. What confronted the UB Project team on site was not the limitations of skill or technology, but the real-world constraints often amiss in the early equation: the people and their everyday lives. With over 6,195 miles of distance between the two groups, it takes more than just dedication to make a collaboration blossom. That may be the desire for a positive impact. Moreover, it may be the goal of cultivating a healthier relationship with energy that spans a million-person scale. No matter where you are, there is no one solution to the complex story of energy. This progressive realization brings the two teams together every two weeks in virtual space, bridging the distance between the two points.  More

  • in

    US and UAE governments highlight early warning system for climate resilience

    The following is a joint announcement from MIT and Community Jameel.

    An international project to build community resilience to the effects of climate change, launched by Community Jameel and a research team at MIT, has been recognized as an innovation sprint at the 2023 summit of the United States’ and United Arab Emirates’ Agriculture Innovation Mission for Climate (AIM4C).

    The Jameel Observatory Climate Resilience Early Warning System Network (Jameel Observatory-CREWSnet), one of MIT’s five Climate Grand Challenges flagship projects, aims to empower communities worldwide, specifically within the agriculture sector, to adapt to climate shocks by launching cross-sector collaborations and by combining state-of-the-art climate and socioeconomic forecasting techniques with technological solutions to support communities’ resilience.

    AIM4C is a joint initiative of the U.S. and U.A.E. that seeks to enhance climate action by accelerating agriculture and food systems innovation and investment. Innovation sprints are selected by AIM4C to accelerate their impact following a competitive process that considers scientific excellence and financial support.

    “As we launch Jameel Observatory-CREWSnet, the AIM4C summit offers a great opportunity to share our plans and initial work with all those who are interested in enhancing the capacity of agricultural communities in vulnerable countries to deal with challenges of climate change,” says Elfatih Eltahir, HM King Bhumibol Professor of Hydrology and Climate at MIT and project leader of the Jameel Observatory-CREWSnet.

    Jameel Observatory-CREWSnet seeks to bridge the gap between the knowledge about climate change created at research institutions such as MIT and the local farming communities that are adapting to the impacts of climate change. By effectively informing and engaging local communities, the project seeks to enable farmers to sustainably increase their agricultural productivity and income.     

    The Jameel Observatory-CREWSnet will initially pilot in Bangladesh and Sudan, working with local partners BRAC, a leading international nonprofit headquartered in Bangladesh, and the Agricultural Research Corporation-Sudan, the principal agricultural research arm of the Sudanese government, and with MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL), the global research center working to reduce poverty by ensuring that policy is informed by scientific evidence. Beginning in southwestern Bangladesh, the Jameel Observatory-CREWSnet will integrate next-generation climate forecasting, predictive analytics, new technologies, and financial instruments. In East Africa, with a focus on Sudan, the initiative will emphasize adopting modern technology to use a better variety of heat-resistant seeds, increasing the use of targeted fertilizers, strengthening soils through soil fertility mapping combined with data modeling, and emphasizing vertical expansion of agriculture over traditional horizontal expansion. The work in Sudan is extensible to other regions in Africa. Jameel Observatory-CREWSnet’s activities and timeline will be reevaluated as the team monitors the ongoing situation in Sudan.

    Using local climate insights, communities will be empowered to adapt proactively to climate change by optimally planning their agricultural activities, targeting emergent economic opportunities, and proactively managing risks from climate change.

    George Richards, director of Community Jameel, says: “Community Jameel is proud to be collaborating with MIT, BRAC, and the Agricultural Research Corporation-Sudan to empower agricultural communities to adapt to the ever-growing challenges arising from climate change — challenges which, as we are seeing acutely in Sudan, are compounded by other crises. We welcome the support of the U.S. and U.A.E. governments in selecting the Jameel Observatory-CREWSnet as an AIM4C innovation sprint.”

    Md Liakath Ali, director of climate change, urban development, and disaster risk management at BRAC, says: “Over our five decades working alongside climate-vulnerable communities in Bangladesh, BRAC has seen firsthand how locally led climate adaptation helps protect lives and livelihoods. BRAC is proud to work with Community Jameel and MIT to empower vulnerable communities to proactively adapt to the impacts of climate change.”

    The Jameel Observatory-CREWSnet was launched at COP27 in Sharm El Sheikh as part of the Jameel Observatory, an international collaboration launched in 2021 that focuses on convening researchers and practitioners who use data and technology to help communities adapt to the impacts of climate change and short-term climate shocks.

    The Jameel Observatory focuses on using data and evidence to prepare for and act on environmental shocks as well as those impacts of climate change and variability which threaten human and environmental well-being. With a special focus on low- and middle-income countries, the Jameel Observatory works at the interface of climate, natural disasters, agricultural and food systems, and health. It emphasizes the need to incorporate local as well as scientific knowledge to prepare and act in anticipation of environmental shocks.

    Launched in 2020, MIT’s Climate Grand Challenges initiative is designed to mobilize the Institute’s research community around tackling the most difficult unsolved climate problems in emissions reduction, climate adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change. MIT selected 27 teams as finalists from a field of nearly 100 initial proposals. In 2022, five teams with the most promising concepts were announced as multi-year flagship projects. More

  • in

    Helping cassava farmers by extending crop life

    The root vegetable cassava is a major food staple in dozens of countries across the world. Drought-resistant, nutritious, and tasty, it has also become a major source of income for small-scale, rural farmers in places like West Africa and Southeast Asia.

    But the utility of cassava has always been limited by its short postharvest shelf life of two to three days. That puts millions of farmers who rely on the crop in a difficult position. The farmers can’t plant more than they can sell quickly in local markets, and they’re often forced to sell below market prices because buyers know the harvest will spoil rapidly. As a result, cassava farmers are among the world’s poorest people.

    Now the startup CassVita is buying cassava directly from farmers and applying a patent-pending biotechnology to extend its shelf life to 18 months. The approach has the potential to transform economies in rural, impoverished regions where millions of families rely on the crop for income.

    CassVita tells farmers how much cassava the company will buy each month, and processes the cassava at a manufacturing facility in Cameroon. It currently sells the first version of its product as a powdered food to people in Cameroon and to West African immigrants in the U.S.

    But CassVita founder and CEO Pelkins Ajanoh ’18 says the future of the company will revolve around its next product: a cassava-based flour that can act as a direct substitute for wheat. The wheat substitute would dramatically broaden CassVita’s target market to include the fast-growing, trillion-dollar healthy food market.

    Ajanoh says CassVita is currently able to increase farmers’ incomes by about 400 percent through its purchases.

    “Our objective is to leverage proprietary technology to offer a healthier and better-tasting alternative to wheat while creating prosperity for local farmers,” Ajanoh says. “We’re hoping to tap into this huge market while empowering farmers, all by minimizing spoilage and incentivizing farmers to plant more.”

    Gaining confidence to help a community

    While growing up in Cameroon, Ajanoh’s parents always emphasized the importance of education for him and his three siblings. But Ajanoh lost his father when he was 13, and his mother moved to the U.S. a year later to help provide for the family. During that time, Ajanoh lived with his grandmother, a cassava farmer. For many years, Ajanoh watched his grandmother harvest cassava without making any lasting financial gains. He remembers feeling powerless as his grandmother struggled to pay for things like diabetes medication.

    Then Ajanoh earned the top marks on the national exams that Cameroonian students take before college. After high school, he joined his mother in the U.S. and came to MIT to study mechanical engineering. Once on campus, Ajanoh says he had lunch with new people all the time to learn from them.

    “I’d never had this community of intellectuals — and they were from all over the world — so I soaked up as much as I could,” Ajanoh says. “That sparked an interest in entrepreneurship, because MIT is super entrepreneurial. Everyone’s thinking of starting something cool.”

    Ajanoh also got a confidence boost during an internship in the summer after his junior year, when he created self-driving technology for General Motors that was eventually patented.

    “It made me realize I could do something really valuable for the world, and by the end of that internship I was thinking, ‘Now I want to solve a problem in my community,’” he says.

    Returning to the crop he knew well, Ajanoh received a series of grants from the MIT Sandbox Innovation Fund to experiment with ways to extend the shelf life of cassava. In the summer of 2018, the MIT-Africa program sponsored three MIT students to fly to Cameroon with him to participate in internships with the company.

    Today CassVita partners with development banks to help farmers get loans to buy the cassava sticks used for planting. Ajanoh says CassVita decided on a powdered food for its first product because it requires less marketing to sell to West Africans, who are familiar with the dish. Now the company is working on a cassava flour that it will market to all consumers looking for healthy alternatives to wheat that can be used in pastries and other baked goods.

    “Cassava makes sense as a global substitute to wheat because it’s gluten free, grain free, nut free, and it also helps with glucose regulation, to normalize blood sugar levels, to lower triglycerides, so the health benefits are exciting,” Ajanoh says. “But the farmers were still living in poverty, so if we could solve the shelf-life problem then we could empower these farmers to offer healthier wheat alternatives to the global market.”

    The project has taken on additional urgency now that the war in Ukraine is limiting that country’s wheat and grain exports, raising prices, and heightening food insecurity in regions around the globe.

    Showing the value of helping farmers

    Ajanoh says the majority of people farming cassava are women, and he says the challenges related to cassava’s shelf life have contributed to gender inequities in many communities. In fact, of the roughly 500 farmers CassVita works with in Cameroon, 95 percent are women.

    “That has always excited me because I was raised by women, so working on something that could empower women in their communities and give them authority is fulfilling,” Ajanoh says.

    Ajanoh has already heard from farmers who have been able to send their children to school for the first time because of improved financial situations. Now, as CassVita continues to scale, Ajanoh wants to stay focused on the technology that enables these new business models.

    “We’re evolving into a food technology company,” Ajanoh says. “We prefer to focus on leveraging technology to impact lives and improve outcomes in these communities. Right now, we’re going all the way to consumers because this is an opportunity the Nestles and the Unilevers of the world won’t pick up because the market doesn’t make sense to them yet. So, we have to build this company and show them the value.” More

  • in

    MIT Center for Real Estate launches the Asia Real Estate Initiative

    To appreciate the explosive urbanization taking place in Asia, consider this analogy: Every 40 days, a city the equivalent size of Boston is built in Asia. Of the $24.7 trillion real estate investment opportunities predicted by 2030 in emerging cities, $17.8 trillion (72 percent) will be in Asia. While this growth is exciting to the real estate industry, it brings with it the attendant social and environmental issues.

    To promote a sustainable and innovative approach to this growth, leadership at the MIT Center for Real Estate (MIT CRE) recently established the Asia Real Estate Initiative (AREI), which aims to become a platform for industry leaders, entrepreneurs, and the academic community to find solutions to the practical concerns of real estate development across these countries.

    “Behind the creation of this initiative is the understanding that Asia is a living lab for the study of future global urban development,” says Hashim Sarkis, dean of the MIT School of Architecture and Planning.

    An investment in cities of the future

    One of the areas in AREI’s scope of focus is connecting sustainability and technology in real estate.

    “We believe the real estate sector should work cooperatively with the energy, science, and technology sectors to solve the climate challenges,” says Richard Lester, the Institute’s associate provost for international activities. “AREI will engage academics and industry leaders, nongovernment organizations, and civic leaders globally and in Asia, to advance sharing knowledge and research.”

    In its effort to understand how trends and new technologies will impact the future of real estate, AREI has received initial support from a prominent alumnus of MIT CRE who wishes to remain anonymous. The gift will support a cohort of researchers working on innovative technologies applicable to advancing real estate sustainability goals, with a special focus on the global and Asia markets. The call for applications is already under way, with AREI seeking to collaborate with scholars who have backgrounds in economics, finance, urban planning, technology, engineering, and other disciplines.

    “The research on real estate sustainability and technology could transform this industry and help invent global real estate of the future,” says Professor Siqi Zheng, faculty director of MIT CRE and AREI faculty chair. “The pairing of real estate and technology often leads to innovative and differential real estate development strategies such as buildings that are green, smart, and healthy.”

    The initiative arrives at a key time to make a significant impact and cement a leadership role in real estate development across Asia. MIT CRE is positioned to help the industry increase its efficiency and social responsibility, with nearly 40 years of pioneering research in the field. Zheng, an established scholar with expertise on urban growth in fast-urbanizing regions, is the former president of the Asia Real Estate Society and sits on the Board of American Real Estate and Urban Economics Association. Her research has been supported by international institutions including the World Bank, the Asian Development Bank, and the Lincoln Institute of Land Policy.

    “The researchers in AREI are now working on three interrelated themes: the future of real estate and live-work-play dynamics; connecting sustainability and technology in real estate; and innovations in real estate finance and business,” says Zheng.

    The first theme has already yielded a book — “Toward Urban Economic Vibrancy: Patterns and Practices in Asia’s New Cities” — recently published by SA+P Press.

    Engaging thought leaders and global stakeholders

    AREI also plans to collaborate with counterparts in Asia to contribute to research, education, and industry dialogue to meet the challenges of sustainable city-making across the continent and identify areas for innovation. Traditionally, real estate has been a very local business with a lengthy value chain, according to Zhengzhen Tan, director of AREI. Most developers focused their career on one particular product type in one particular regional market. AREI is working to change that dynamic.

    “We want to create a cross-border dialogue within Asia and among Asia, North America, and European leaders to exchange knowledge and practices,” says Tan. “The real estate industry’s learning costs are very high compared to other sectors. Collective learning will reduce the cost of failure and have a significant impact on these global issues.”

    The 2021 United Nations Climate Change Conference in Glasgow shed additional light on environmental commitments being made by governments in Asia. With real estate representing 40 percent of global greenhouse gas emissions, the Asian real estate market is undergoing an urgent transformation to deliver on this commitment.

    “One of the most pressing calls is to get to net-zero emissions for real estate development and operation,” says Tan. “Real estate investors and developers are making short- and long-term choices that are locking in environmental footprints for the ‘decisive decade.’ We hope to inspire developers and investors to think differently and get out of their comfort zone.” More