More stories

  • in

    The future of motorcycles could be hydrogen

    MIT’s Electric Vehicle Team, which has a long record of building and racing innovative electric vehicles, including cars and motorcycles, in international professional-level competitions, is trying something very different this year: The team is building a hydrogen-powered electric motorcycle, using a fuel cell system, as a testbed for new hydrogen-based transportation.

    The motorcycle successfully underwent its first full test-track demonstration in October. It is designed as an open-source platform that should make it possible to swap out and test a variety of different components, and for others to try their own versions based on plans the team is making freely available online.

    Aditya Mehrotra, who is spearheading the project, is a graduate student working with mechanical engineering professor Alex Slocum, the Walter M. May  and A. Hazel May Chair in Emerging Technologies. Mehrotra was studying energy systems and happened to also really like motorcycles, he says, “so we came up with the idea of a hydrogen-powered bike. We did an evaluation study, and we thought that this could actually work. We [decided to] try to build it.”

    Team members say that while battery-powered cars are a boon for the environment, they still face limitations in range and have issues associated with the mining of lithium and resulting emissions. So, the team was interested in exploring hydrogen-powered vehicles as a clean alternative, allowing for vehicles that could be quickly refilled just like gasoline-powered vehicles.

    Unlike past projects by the team, which has been part of MIT since 2005, this vehicle will not be entering races or competitions but will be presented at a variety of conferences. The team, consisting of about a dozen students, has been working on building the prototype since January 2023. In October they presented the bike at the Hydrogen Americas Summit, and in May they will travel to the Netherlands to present it at the World Hydrogen Summit. In addition to the two hydrogen summits, the team plans to show its bike at the Consumer Electronics Show in Las Vegas this month.

    “We’re hoping to use this project as a chance to start conversations around ‘small hydrogen’ systems that could increase demand, which could lead to the development of more infrastructure,” Mehrotra says. “We hope the project can help find new and creative applications for hydrogen.” In addition to these demonstrations and the online information the team will provide, he adds, they are also working toward publishing papers in academic journals describing their project and lessons learned from it, in hopes of making “an impact on the energy industry.”

    Play video

    For the love of speed: Building a hydrogen-powered motorcycle

    The motorcycle took shape over the course of the year piece by piece. “We got a couple of industry sponsors to donate components like the fuel cell and a lot of the major components of the system,” he says. They also received support from the MIT Energy Initiative, the departments of Mechanical Engineering and Electrical Engineering and Computer Science, and the MIT Edgerton Center.

    Initial tests were conducted on a dynamometer, a kind of instrumented treadmill Mehrotra describes as “basically a mock road.” The vehicle used battery power during its development, until the fuel cell, provided by South Korean company Doosan, could be delivered and installed. The space the group has used to design and build the prototype, the home of the Electric Vehicle Team, is in MIT’s Building N51 and is well set up to do detailed testing of each of the bike’s components as it is developed and integrated.

    Elizabeth Brennan, a senior in mechanical engineering, says she joined the team in January 2023 because she wanted to gain more electrical engineering experience, “and I really fell in love with it.” She says group members “really care and are very excited to be here and work on this bike and believe in the project.”

    Brennan, who is the team’s safety lead, has been learning about the safe handling methods required for the bike’s hydrogen fuel, including the special tanks and connectors needed. The team initially used a commercially available electric motor for the prototype but is now working on an improved version, designed from scratch, she says, “which gives us a lot more flexibility.”

    As part of the project, team members are developing a kind of textbook describing what they did and how they carried out each step in the process of designing and fabricating this hydrogen electric fuel-cell bike. No such motorcycle yet exists as a commercial product, though a few prototypes have been built.

    That kind of guidebook to the process “just doesn’t exist,” Brennan says. She adds that “a lot of the technology development for hydrogen is either done in simulation or is still in the prototype stages, because developing it is expensive, and it’s difficult to test these kinds of systems.” One of the team’s goals for the project is to make everything available as an open-source design, and “we want to provide this bike as a platform for researchers and for education, where researchers can test ideas in both space- and funding-constrained environments.”

    Unlike a design built as a commercial product, Mehrotra says, “our vehicle is fully designed for research, so you can swap components in and out, and get real hardware data on how good your designs are.” That can help people work on implementing their new design ideas and help push the industry forward, he says.

    The few prototypes developed previously by some companies were inefficient and expensive, he says. “So far as we know, we are the first fully open-source, rigorously documented, tested and released-as-a-platform, [fuel cell] motorcycle in the world. No one else has made a motorcycle and tested it to the level that we have, and documented to the point that someone might actually be able to take this and scale it in the future, or use it in research.”

    He adds that “at the moment, this vehicle is affordable for research, but it’s not affordable yet for commercial production because the fuel cell is a very big, expensive component.” Doosan Fuel Cell, which provided the fuel cell for the prototype bike, produces relatively small and lightweight fuel cells mostly for use in drones. The company also produces hydrogen storage and delivery systems.

    The project will continue to evolve, says team member Annika Marschner, a sophomore in mechanical engineering. “It’s sort of an ongoing thing, and as we develop it and make changes, make it a stronger, better bike, it will just continue to grow over the years, hopefully,” she says.

    While the Electric Vehicle Team has until now focused on battery-powered vehicles, Marschner says, “Right now we’re looking at hydrogen because it seems like something that’s been less explored than other technologies for making sustainable transportation. So, it seemed like an exciting thing for us to offer our time and effort to.”

    Making it all work has been a long process. The team is using a frame from a 1999 motorcycle, with many custom-made parts added to support the electric motor, the hydrogen tank, the fuel cell, and the drive train. “Making everything fit in the frame of the bike is definitely something we’ve had to think about a lot because there’s such limited space there. So, it required trying to figure out how to mount things in clever ways so that there are not conflicts,” she says.

    Marschner says, “A lot of people don’t really imagine hydrogen energy being something that’s out there being used on the roads, but the technology does exist.” She points out that Toyota and Hyundai have hydrogen-fueled vehicles on the market, and that some hydrogen fuel stations exist, mostly in California, Japan, and some European countries. But getting access to hydrogen, “for your average consumer on the East Coast, is a huge, huge challenge. Infrastructure is definitely the biggest challenge right now to hydrogen vehicles,” she says.

    She sees a bright future for hydrogen as a clean fuel to replace fossil fuels over time. “I think it has a huge amount of potential,” she says. “I think one of the biggest challenges with moving hydrogen energy forward is getting these demonstration projects actually developed and showing that these things can work and that they can work well. So, we’re really excited to bring it along further.” More

  • in

    Harnessing hydrogen’s potential to address long-haul trucking emissions

    The transportation of goods forms the basis of today’s globally distributed supply chains, and long-haul trucking is a central and critical link in this complex system. To meet climate goals around the world, it is necessary to develop decarbonized solutions to replace diesel powertrains, but given trucking’s indispensable and vast role, these solutions must be both economically viable and practical to implement. While hydrogen-based options, as an alternative to diesel, have the potential to become a promising decarbonization strategy, hydrogen has significant limitations when it comes to delivery and refueling.These roadblocks, combined with hydrogen’s compelling decarbonization potential, are what motivated a team of MIT researchers led by William H. Green, the Hoyt Hottel Professor in Chemical Engineering, to explore a cost-effective way to transport and store hydrogen using liquid organic hydrogen carriers (LOHCs). The team is developing a disruptive technology that allows LOHCs to not only deliver the hydrogen to the trucks, but also store the hydrogen onboard.Their findings were recently published in Energy and Fuels, a peer-reviewed journal of the American Chemical Society, in a paper titled “Perspective on Decarbonizing Long-Haul Trucks Using Onboard Dehydrogenation of Liquid Organic Hydrogen Carriers.” The MIT team is led by Green, and includes graduate students Sayandeep Biswas and Kariana Moreno Sader. Their research is supported by the MIT Climate and Sustainability Consortium (MCSC) through its Seed Awards program and MathWorks, and ties into the work within the MCSC’s Tough Transportation Modes focus area.An “onboard” approachCurrently, LOHCs, which work within existing retail fuel distribution infrastructure, are used to deliver hydrogen gas to refueling stations, where it is then compressed and delivered onto trucks equipped with hydrogen fuel cell or combustion engines.“This current approach incurs significant energy loss due to endothermic hydrogen release and compression at the retail station” says Green. “To address this, our work is exploring a more efficient application, with LOHC-powered trucks featuring onboard dehydrogenation.”To implement such a design, the team aims to modify the truck’s powertrain (the system inside a vehicle that produces the energy to propel it forward) to allow onboard hydrogen release from the LOHCs, using waste heat from the engine exhaust to power the “dehydrogenation” process. 

    Proposed process flow diagram for onboard dehydrogenation. Component sizes are not to scale and have been enlarged for illustrative purposes.

    Image courtesy of the Green Group.

    Previous item
    Next item

    The dehydrogenation process happens within a high-temperature reactor, which continually receives hydrogen-rich LOHCs from the fuel storage tank. Hydrogen released from the reactor is fed to the engine, after passing through a separator to remove any lingering LOHC. On its way to the engine, some of the hydrogen gets diverted to a burner to heat the reactor, which helps to augment the reactor heating provided by the engine exhaust gases.Acknowledging and addressing hydrogen’s drawbacksThe team’s paper underscores that current uses of hydrogen, including LOHC systems, to decarbonize the trucking sector have drawbacks. Regardless of technical improvements, these existing options remain prohibitively expensive due to the high cost of retail hydrogen delivery.“We present an alternative option that addresses a lot of the challenges and seems to be a viable way in which hydrogen can be used in this transportation context,” says Biswas, who was recently elected to the MIT Martin Family Society of Fellows for Sustainability for his work in this area. “Hydrogen, when used through LOHCs, has clear benefits for long-hauling, such as scalability and fast refueling time. There is also an enormous potential to improve delivery and refueling to further reduce cost, and our system is working to do that.”“Utilizing hydrogen is an option that is globally accessible, and could be extended to countries like the one where I am from,” says Moreno Sader, who is originally from Colombia. “Since it synergizes with existing infrastructure, large upfront investments are not necessary. The global applicability is huge.”Moreno Sader is a MathWorks Fellow, and, along with the rest of the team, has been using MATLAB tools to develop models and simulations for this work.Different sectors coming togetherDecarbonizing transportation modes, including long-haul trucking, requires expertise and perspectives from different industries — an approach that resonates with the MCSC’s mission.The team’s groundbreaking research into LOHC-powered trucking is among several projects supported by the MCSC within its Tough Transportation Modes focus area, led by postdoc Impact Fellow Danika MacDonell. The MCSC-supported projects were chosen to tackle a complementary set of societally important and industry-relevant challenges to decarbonizing heavy-duty transportation, which span a range of sectors and solution pathways. Other projects focus, for example, on logistics optimization for electrified trucking fleets, or air quality and climate impacts of ammonia-powered shipping.The MCSC works to support and amplify the impact of these projects by engaging the research teams with industry partners from a variety of sectors. In addition, the MCSC pursues a collective multisectoral approach to decarbonizing transportation by facilitating shared learning across the different projects through regular cross-team discussion.The research led by Green celebrates this cross-sector theme by integrating industry-leading computing tools provided by MathWorks with cutting-edge developments in chemical engineering, as well as industry-leading commercial LOHC reactor demonstrations, to build a compelling vision for cost-effective LOHC-powered trucking.The review and research conducted in the Energy and Fuels article lays the groundwork for further investigations into LOHC-powered truck design. The development of such a vehicle — with a power-dense, efficient, and robust onboard hydrogen release system — requires dedicated investigations and further optimization of core components geared specifically toward the trucking application. More

  • in

    Will the charging networks arrive in time?

    For many owners of electric vehicles (EVs), or for prospective EV owners, a thorny problem is where to charge them. Even as legacy automakers increasingly invest in manufacturing more all-electric cars and trucks, there is not a dense network of charging stations serving many types of vehicles, which would make EVs more convenient to use.

    “We’re going to have the ability to produce and deliver millions of EVs,” said MIT Professor Charles Fine at the final session this semester of the MIT Mobility Forum. “It’s not clear we’re going to have the ability to charge them. That’s a huge, huge mismatch.”

    Indeed, making EV charging stations as ubiquitous as gas stations could spur a major transition within the entire U.S. vehicle fleet. While the automaker Tesla has built a network of almost 2,000 charging stations across the U.S., and might make some interoperable with other makes of vehicles, independent companies trying to develop a business out of it are still trying to gain significant traction.

    “They don’t have a business model that works yet,” said Fine, the Chrysler Leaders for Global Operations Professor of Management at the MIT Sloan School of Management, speaking of startup firms. “They haven’t figured out their supply chains. They haven’t figured out the customer value proposition. They haven’t figured out their technology standards. It’s a very, very immature domain.”

    The May 12 event drew nearly 250 people as well as an online audience. The MIT Mobility Forum is a weekly set of talks and discussions during the academic year, ranging widely across the field of transportation and design. It is hosted by the MIT Mobility Initiative, which works to advance sustainable, accessible, and safe forms of transportation.

    Fine is a prominent expert in the areas of operations strategy, entrepreneurship, and supply chain management. He has been at MIT Sloan for over 30 years; from 2015 to 2022, he also served as the founding president, dean, and CEO of the Asia School of Business in Kuala Lumpur, Malaysia, a collaboration between MIT Sloan and Bank Negara Malaysia. Fine is also author of “Faster, Smarter, Greener: The Future of the Car and Urban Mobility” (MIT Press, 2017).

    In Fine’s remarks, he discussed the growth stages of startup companies, highlighting three phases where firms try to “nail it, scale it, and sail it” — that is, figure out the concept and workability of their enterprise, try to expand it, and then operate as a larger company. The charging-business startups are still somewhere within the first of these phases.

    At the same time, the established automakers have announced major investments in EVs — a collective $860 billion over the next decade, Fine noted. Among others, Ford says it will invest $50 billion in EV production by 2026; General Motors plans to spend $35 billion on EVs by 2025; and Toyota has announced it will invest $35 billion in EV manufacturing by 2030.

    With all these vehicles potentially coming to market, Fine suggested, the crux of the issue is a kind of “chicken and egg” problem between EVs and the network needed to support them.

    “If you’re a startup company in the charging business, if there aren’t many EVs out there, you’re not going to be making much money, and that doesn’t give you the capital to continue to invest and grow,” Fine said. “So, they need to wait until they have revenue before they can grow further. On the other hand, why should anybody buy an electric car if they don’t think they’re going to be able to charge it?”

    Those living in single-family homes can install chargers. But many others are not in that situation, Fine noted: “For people who don’t have fixed parking spaces and have to rely on the public network, there is this chicken-and-egg problem. They can’t buy an EV unless they know how they’re going to be able to charge it, and charging companies can’t build out their networks unless they know how they’re going to get their revenue.”

    The event featured a question-and-answer session and audience discussion, with a range of questions, and comments from some industry veterans, including Robin Chase SM ’86, the co-founder and former CEO of Zipcar. She expressed some optimism that startup charging companies will be able to get traction in the nascent market before long.

    “The right companies can learn very fast,” Chase said. “There’s no reason why they can’t correct those scaling problems in short-ish order.”

    In answer to other audience questions, Fine noted some of the challenges that will have to be addressed by independent charging firms, such as unified standards and interoperability among automakers and charging stations.

    “For a driver to have to have six different apps, or [their] car doesn’t fit in the plug here or there, or my software doesn’t talk to my credit card … connectivity, standards, technical issues need to be worked out as well,” Fine said.

    There are also varying regulatory issues, including grid policies and what consumers can be billed for, which have to be worked out on a state-by-state basis, meaning that even modest-size startups will have to have knowledgeable and productive legal departments.

    All of which makes it possible, as Fine suggested, that the large legacy automakers will start investing more heavily in the charging business in the near future. Mercedes, he noted, just announced in January that it is entering into a partnership with charging firms ChargePoint and MN8 Energy to develop about 400 charging stations across North America by 2027. By necessity, others might have to follow suit if they want to protect their massive planned investments in the EV sector.

    “I’m not in the business of telling [automakers] what to do, but I do think they have a lot at risk,” Fine said. “They’re spending billions and billions of dollars to produce these cars, and I don’t think they can afford an epic failure [if] people don’t buy them because there’s no charging infrastructure. If they’re waiting for the startups to build out rapidly, then they may be waiting longer than they hope to wait.” More

  • in

    Minimizing electric vehicles’ impact on the grid

    National and global plans to combat climate change include increasing the electrification of vehicles and the percentage of electricity generated from renewable sources. But some projections show that these trends might require costly new power plants to meet peak loads in the evening when cars are plugged in after the workday. What’s more, overproduction of power from solar farms during the daytime can waste valuable electricity-generation capacity.

    In a new study, MIT researchers have found that it’s possible to mitigate or eliminate both these problems without the need for advanced technological systems of connected devices and real-time communications, which could add to costs and energy consumption. Instead, encouraging the placing of charging stations for electric vehicles (EVs) in strategic ways, rather than letting them spring up anywhere, and setting up systems to initiate car charging at delayed times could potentially make all the difference.

    The study, published today in the journal Cell Reports Physical Science, is by Zachary Needell PhD ’22, postdoc Wei Wei, and Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society.

    In their analysis, the researchers used data collected in two sample cities: New York and Dallas. The data were gathered from, among other sources, anonymized records collected via onboard devices in vehicles, and surveys that carefully sampled populations to cover variable travel behaviors. They showed the times of day cars are used and for how long, and how much time the vehicles spend at different kinds of locations — residential, workplace, shopping, entertainment, and so on.

    The findings, Trancik says, “round out the picture on the question of where to strategically locate chargers to support EV adoption and also support the power grid.”

    Better availability of charging stations at workplaces, for example, could help to soak up peak power being produced at midday from solar power installations, which might otherwise go to waste because it is not economical to build enough battery or other storage capacity to save all of it for later in the day. Thus, workplace chargers can provide a double benefit, helping to reduce the evening peak load from EV charging and also making use of the solar electricity output.

    These effects on the electric power system are considerable, especially if the system must meet charging demands for a fully electrified personal vehicle fleet alongside the peaks in other demand for electricity, for example on the hottest days of the year. If unmitigated, the evening peaks in EV charging demand could require installing upwards of 20 percent more power-generation capacity, the researchers say.

    “Slow workplace charging can be more preferable than faster charging technologies for enabling a higher utilization of midday solar resources,” Wei says.

    Meanwhile, with delayed home charging, each EV charger could be accompanied by a simple app to estimate the time to begin its charging cycle so that it charges just before it is needed the next day. Unlike other proposals that require a centralized control of the charging cycle, such a system needs no interdevice communication of information and can be preprogrammed — and can accomplish a major shift in the demand on the grid caused by increasing EV penetration. The reason it works so well, Trancik says, is because of the natural variability in driving behaviors across individuals in a population.

    By “home charging,” the researchers aren’t only referring to charging equipment in individual garages or parking areas. They say it’s essential to make charging stations available in on-street parking locations and in apartment building parking areas as well.

    Trancik says the findings highlight the value of combining the two measures — workplace charging and delayed home charging — to reduce peak electricity demand, store solar energy, and conveniently meet drivers’ charging needs on all days. As the team showed in earlier research, home charging can be a particularly effective component of a strategic package of charging locations; workplace charging, they have found, is not a good substitute for home charging for meeting drivers’ needs on all days.

    “Given that there’s a lot of public money going into expanding charging infrastructure,” Trancik says, “how do you incentivize the location such that this is going to be efficiently and effectively integrated into the power grid without requiring a lot of additional capacity expansion?” This research offers some guidance to policymakers on where to focus rules and incentives.

    “I think one of the fascinating things about these findings is that by being strategic you can avoid a lot of physical infrastructure that you would otherwise need,” she adds. “Your electric vehicles can displace some of the need for stationary energy storage, and you can also avoid the need to expand the capacity of power plants, by thinking about the location of chargers as a tool for managing demands — where they occur and when they occur.”

    Delayed home charging could make a surprising amount of difference, the team found. “It’s basically incentivizing people to begin charging later. This can be something that is preprogrammed into your chargers. You incentivize people to delay the onset of charging by a bit, so that not everyone is charging at the same time, and that smooths out the peak.”

    Such a program would require some advance commitment on the part of participants. “You would need to have enough people committing to this program in advance to avoid the investment in physical infrastructure,” Trancik says. “So, if you have enough people signing up, then you essentially don’t have to build those extra power plants.”

    It’s not a given that all of this would line up just right, and putting in place the right mix of incentives would be crucial. “If you want electric vehicles to act as an effective storage technology for solar energy, then the [EV] market needs to grow fast enough in order to be able to do that,” Trancik says.

    To best use public funds to help make that happen, she says, “you can incentivize charging installations, which would go through ideally a competitive process — in the private sector, you would have companies bidding for different projects, but you can incentivize installing charging at workplaces, for example, to tap into both of these benefits.” Chargers people can access when they are parked near their residences are also important, Trancik adds, but for other reasons. Home charging is one of the ways to meet charging needs while avoiding inconvenient disruptions to people’s travel activities.

    The study was supported by the European Regional Development Fund Operational Program for Competitiveness and Internationalization, the Lisbon Portugal Regional Operation Program, and the Portuguese Foundation for Science and Technology. More

  • in

    Reversing the charge

    Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

    “At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

    The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

    “We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

    Displacing new infrastructure

    As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

    But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

    This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

    Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

    Modeling power

    To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

    Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

    “Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.

    Harnessing V2G

    For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

    This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

    “We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle.

    The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

    “Since you’re providing a service to the grid, much as solar panel users do, you could be paid for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

    “People may not be willing to participate ’round the clock, but if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

    “Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”

    Actionable insights

    Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

    Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

    “Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

    The research for this study was funded by MITEI’s Future Energy Systems Center. More

  • in

    Simplifying the production of lithium-ion batteries

    When it comes to battery innovations, much attention gets paid to potential new chemistries and materials. Often overlooked is the importance of production processes for bringing down costs.

    Now the MIT spinout 24M Technologies has simplified lithium-ion battery production with a new design that requires fewer materials and fewer steps to manufacture each cell. The company says the design, which it calls “SemiSolid” for its use of gooey electrodes, reduces production costs by up to 40 percent. The approach also improves the batteries’ energy density, safety, and recyclability.

    Judging by industry interest, 24M is onto something. Since coming out of stealth mode in 2015, 24M has licensed its technology to multinational companies including Volkswagen, Fujifilm, Lucas TVS, Axxiva, and Freyr. Those last three companies are planning to build gigafactories (factories with gigawatt-scale annual production capacity) based on 24M’s technology in India, China, Norway, and the United States.

    “The SemiSolid platform has been proven at the scale of hundreds of megawatts being produced for residential energy-storage systems. Now we want to prove it at the gigawatt scale,” says 24M CEO Naoki Ota, whose team includes 24M co-founder, chief scientist, and MIT Professor Yet-Ming Chiang.

    Establishing large-scale production lines is only the first phase of 24M’s plan. Another key draw of its battery design is that it can work with different combinations of lithium-ion chemistries. That means 24M’s partners can incorporate better-performing materials down the line without substantially changing manufacturing processes.

    The kind of quick, large-scale production of next-generation batteries that 24M hopes to enable could have a dramatic impact on battery adoption across society — from the cost and performance of electric cars to the ability of renewable energy to replace fossil fuels.

    “This is a platform technology,” Ota says. “We’re not just a low-cost and high-reliability operator. That’s what we are today, but we can also be competitive with next-generation chemistry. We can use any chemistry in the market without customers changing their supply chains. Other startups are trying to address that issue tomorrow, not today. Our tech can address the issue today and tomorrow.”

    A simplified design

    Chiang, who is MIT’s Kyocera Professor of Materials Science and Engineering, got his first glimpse into large-scale battery production after co-founding another battery company, A123 Systems, in 2001. As that company was preparing to go public in the late 2000s, Chiang began wondering if he could design a battery that would be easier to manufacture.

    “I got this window into what battery manufacturing looked like, and what struck me was that even though we pulled it off, it was an incredibly complicated manufacturing process,” Chiang says. “It derived from magnetic tape manufacturing that was adapted to batteries in the late 1980s.”

    In his lab at MIT, where he’s been a professor since 1985, Chiang started from scratch with a new kind of device he called a “semi-solid flow battery” that pumps liquids carrying particle-based electrodes to and from tanks to store a charge.

    In 2010, Chiang partnered with W. Craig Carter, who is MIT’s POSCO Professor of Materials Science and Engineering, and the two professors supervised a student, Mihai Duduta ’11, who explored flow batteries for his undergraduate thesis. Within a month, Duduta had developed a prototype in Chiang’s lab, and 24M was born. (Duduta was the company’s first hire.)

    But even as 24M worked with MIT’s Technology Licensing Office (TLO) to commercialize research done in Chiang’s lab, people in the company including Duduta began rethinking the flow battery concept. An internal cost analysis by Carter, who consulted for 24M for several years, ultimately lead the researchers to change directions.

    That left the company with loads of the gooey slurry that made up the electrodes in their flow batteries. A few weeks after Carter’s cost analysis, Duduta, then a senior research scientist at 24M, decided to start using the slurry to assemble batteries by hand, mixing the gooey electrodes directly into the electrolyte. The idea caught on.

    The main components of batteries are the positive and negatively charged electrodes and the electrolyte material that allows ions to flow between them. Traditional lithium-ion batteries use solid electrodes separated from the electrolyte by layers of inert plastics and metals, which hold the electrodes in place.

    Stripping away the inert materials of traditional batteries and embracing the gooey electrode mix gives 24M’s design a number of advantages.

    For one, it eliminates the energy-intensive process of drying and solidifying the electrodes in traditional lithium-ion production. The company says it also reduces the need for more than 80 percent of the inactive materials in traditional batteries, including expensive ones like copper and aluminum. The design also requires no binder and features extra thick electrodes, improving the energy density of the batteries.

    “When you start a company, the smart thing to do is to revisit all of your assumptions  and ask what is the best way to accomplish your objectives, which in our case was simply-manufactured, low-cost batteries,” Chiang says. “We decided our real value was in making a lithium-ion suspension that was electrochemically active from the beginning, with electrolyte in it, and you just use the electrolyte as the processing solvent.”

    In 2017, 24M participated in the MIT Industrial Liaison Program’s STEX25 Startup Accelerator, in which Chiang and collaborators made critical industry connections that would help it secure early partnerships. 24M has also collaborated with MIT researchers on projects funded by the Department of Energy.

    Enabling the battery revolution

    Most of 24M’s partners are eyeing the rapidly growing electric vehicle (EV) market for their batteries, and the founders believe their technology will accelerate EV adoption. (Battery costs make up 30 to 40 percent of the price of EVs, according to the Institute for Energy Research).

    “Lithium-ion batteries have made huge improvements over the years, but even Elon Musk says we need some breakthrough technology,” Ota says, referring to the CEO of EV firm Tesla. “To make EVs more common, we need a production cost breakthrough; we can’t just rely on cost reduction through scaling because we already make a lot of batteries today.”

    24M is also working to prove out new battery chemistries that its partners could quickly incorporate into their gigafactories. In January of this year, 24M received a grant from the Department of Energy’s ARPA-E program to develop and scale a high-energy-density battery that uses a lithium metal anode and semi-solid cathode for use in electric aviation.

    That project is one of many around the world designed to validate new lithium-ion battery chemistries that could enable a long-sought battery revolution. As 24M continues to foster the creation of large scale, global production lines, the team believes it is well-positioned to turn lab innovations into ubiquitous, world-changing products.

    “This technology is a platform, and our vision is to be like Google’s Android [operating system], where other people can build things on our platform,” Ota says. “We want to do that but with hardware. That’s why we’re licensing the technology. Our partners can use the same production lines to get the benefits of new chemistries and approaches. This platform gives everyone more options.” More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    3 Questions: Daniel Cohn on the benefits of high-efficiency, flexible-fuel engines for heavy-duty trucking

    The California Air Resources Board has adopted a regulation that requires truck and engine manufacturers to reduce the nitrogen oxide (NOx) emissions from new heavy-duty trucks by 90 percent starting in 2027. NOx from heavy-duty trucks is one of the main sources of air pollution, creating smog and threatening respiratory health. This regulation requires the largest air pollution cuts in California in more than a decade. How can manufacturers achieve this aggressive goal efficiently and affordably?

    Daniel Cohn, a research scientist at the MIT Energy Initiative, and Leslie Bromberg, a principal research scientist at the MIT Plasma Science and Fusion Center, have been working on a high-efficiency, gasoline-ethanol engine that is cleaner and more cost-effective than existing diesel engine technologies. Here, Cohn explains the flexible-fuel engine approach and why it may be the most realistic solution — in the near term — to help California meet its stringent vehicle emission reduction goals. The research was sponsored by the Arthur Samberg MIT Energy Innovation fund.

    Q. How does your high-efficiency, flexible-fuel gasoline engine technology work?

    A. Our goal is to provide an affordable solution for heavy-duty vehicle (HDV) engines to emit low levels of nitrogen oxide (NOx) emissions that would meet California’s NOx regulations, while also quick-starting gasoline-consumption reductions in a substantial fraction of the HDV fleet.

    Presently, large trucks and other HDVs generally use diesel engines. The main reason for this is because of their high efficiency, which reduces fuel cost — a key factor for commercial trucks (especially long-haul trucks) because of the large number of miles that are driven. However, the NOx emissions from these diesel-powered vehicles are around 10 times greater than those from spark-ignition engines powered by gasoline or ethanol.

    Spark-ignition gasoline engines are primarily used in cars and light trucks (light-duty vehicles), which employ a three-way catalyst exhaust treatment system (generally referred to as a catalytic converter) that reduces vehicle NOx emissions by at least 98 percent and at a modest cost. The use of this highly effective exhaust treatment system is enabled by the capability of spark-ignition engines to be operated at a stoichiometric air/fuel ratio (where the amount of air matches what is needed for complete combustion of the fuel).

    Diesel engines do not operate with stoichiometric air/fuel ratios, making it much more difficult to reduce NOx emissions. Their state-of-the-art exhaust treatment system is much more complex and expensive than catalytic converters, and even with it, vehicles produce NOx emissions around 10 times higher than spark-ignition engine vehicles. Consequently, it is very challenging for diesel engines to further reduce their NOx emissions to meet the new California regulations.

    Our approach uses spark-ignition engines that can be powered by gasoline, ethanol, or mixtures of gasoline and ethanol as a substitute for diesel engines in HDVs. Gasoline has the attractive feature of being widely available and having a comparable or lower cost than diesel fuel. In addition, presently available ethanol in the U.S. produces up to 40 percent less greenhouse gas (GHG) emissions than diesel fuel or gasoline and has a widely available distribution system.

    To make gasoline- and/or ethanol-powered spark-ignition engine HDVs attractive for widespread HDV applications, we developed ways to make spark-ignition engines more efficient, so their fuel costs are more palatable to owners of heavy-duty trucks. Our approach provides diesel-like high efficiency and high power in gasoline-powered engines by using various methods to prevent engine knock (unwanted self-ignition that can damage the engine) in spark-ignition gasoline engines. This enables greater levels of turbocharging and use of higher engine compression ratios. These features provide high efficiency, comparable to that provided by diesel engines. Plus, when the engine is powered by ethanol, the required knock resistance is provided by the intrinsic high knock resistance of the fuel itself. 

    Q. What are the major challenges to implementing your technology in California?

    A. California has always been the pioneer in air pollutant control, with states such as Washington, Oregon, and New York often following suit. As the most populous state, California has a lot of sway — it’s a trendsetter. What happens in California has an impact on the rest of the United States.

    The main challenge to implementation of our technology is the argument that a better internal combustion engine technology is not needed because battery-powered HDVs — particularly long-haul trucks — can play the required role in reducing NOx and GHG emissions by 2035. We think that substantial market penetration of battery electric vehicles (BEV) in this vehicle sector will take a considerably longer time. In contrast to light-duty vehicles, there has been very little penetration of battery power into the HDV fleet, especially in long-haul trucks, which are the largest users of diesel fuel. One reason for this is that long-haul trucks using battery power face the challenge of reduced cargo capability due to substantial battery weight. Another challenge is the substantially longer charging time for BEVs compared to that of most present HDVs.

    Hydrogen-powered trucks using fuel cells have also been proposed as an alternative to BEV trucks, which might limit interest in adopting improved internal combustion engines. However, hydrogen-powered trucks face the formidable challenges of producing zero GHG hydrogen at affordable cost, as well as the cost of storage and transportation of hydrogen. At present the high purity hydrogen needed for fuel cells is generally very expensive.

    Q. How does your idea compare overall to battery-powered and hydrogen-powered HDVs? And how will you persuade people that it is an attractive pathway to follow?

    A. Our design uses existing propulsion systems and can operate on existing liquid fuels, and for these reasons, in the near term, it will be economically attractive to the operators of long-haul trucks. In fact, it can even be a lower-cost option than diesel power because of the significantly less-expensive exhaust treatment and smaller-size engines for the same power and torque. This economic attractiveness could enable the large-scale market penetration that is needed to have a substantial impact on reducing air pollution. Alternatively, we think it could take at least 20 years longer for BEVs or hydrogen-powered vehicles to obtain the same level of market penetration.

    Our approach also uses existing corn-based ethanol, which can provide a greater near-term GHG reduction benefit than battery- or hydrogen-powered long-haul trucks. While the GHG reduction from using existing ethanol would initially be in the 20 percent to 40 percent range, the scale at which the market is penetrated in the near-term could be much greater than for BEV or hydrogen-powered vehicle technology. The overall impact in reducing GHGs could be considerably greater.

    Moreover, we see a migration path beyond 2030 where further reductions in GHG emissions from corn ethanol can be possible through carbon capture and sequestration of the carbon dioxide (CO2) that is produced during ethanol production. In this case, overall CO2 reductions could potentially be 80 percent or more. Technologies for producing ethanol (and methanol, another alcohol fuel) from waste at attractive costs are emerging, and can provide fuel with zero or negative GHG emissions. One pathway for providing a negative GHG impact is through finding alternatives to landfilling for waste disposal, as this method leads to potent methane GHG emissions. A negative GHG impact could also be obtained by converting biomass waste into clean fuel, since the biomass waste can be carbon neutral and CO2 from the production of the clean fuel can be captured and sequestered.

    In addition, our flex-fuel engine technology may be synergistically used as range extenders in plug-in hybrid HDVs, which use limited battery capacity and obviates the cargo capability reduction and fueling disadvantages of long-haul trucks powered by battery alone.

    With the growing threats from air pollution and global warming, our HDV solution is an increasingly important option for near-term reduction of air pollution and offers a faster start in reducing heavy-duty fleet GHG emissions. It also provides an attractive migration path for longer-term, larger GHG reductions from the HDV sector. More