More stories

  • in

    Study finds lands used for grazing can worsen or help climate change

    When it comes to global climate change, livestock grazing can be either a blessing or a curse, according to a new study, which offers clues on how to tell the difference.

    If managed properly, the study shows, grazing can actually increase the amount of carbon from the air that gets stored in the ground and sequestered for the long run. But if there is too much grazing, soil erosion can result, and the net effect is to cause more carbon losses, so that the land becomes a net carbon source, instead of a carbon sink. And the study found that the latter is far more common around the world today.

    The new work, published today in the journal Nature Climate Change, provides ways to determine the tipping point between the two, for grazing lands in a given climate zone and soil type. It also provides an estimate of the total amount of carbon that has been lost over past decades due to livestock grazing, and how much could be removed from the atmosphere if grazing optimization management implemented. The study was carried out by Cesar Terrer, an assistant professor of civil and environmental engineering at MIT; Shuai Ren, a PhD student at the Chinese Academy of Sciences whose thesis is co-supervised by Terrer; and four others.

    “This has been a matter of debate in the scientific literature for a long time,” Terrer says. “In general experiments, grazing decreases soil carbon stocks, but surprisingly, sometimes grazing increases soil carbon stocks, which is why it’s been puzzling.”

    What happens, he explains, is that “grazing could stimulate vegetation growth through easing resource constraints such as light and nutrients, thereby increasing root carbon inputs to soils, where carbon can stay there for centuries or millennia.”

    But that only works up to a certain point, the team found after a careful analysis of 1,473 soil carbon observations from different grazing studies from many locations around the world. “When you cross a threshold in grazing intensity, or the amount of animals grazing there, that is when you start to see sort of a tipping point — a strong decrease in the amount of carbon in the soil,” Terrer explains.

    That loss is thought to be primarily from increased soil erosion on the denuded land. And with that erosion, Terrer says, “basically you lose a lot of the carbon that you have been locking in for centuries.”

    The various studies the team compiled, although they differed somewhat, essentially used similar methodology, which is to fence off a portion of land so that livestock can’t access it, and then after some time take soil samples from within the enclosure area, and from comparable nearby areas that have been grazed, and compare the content of carbon compounds.

    “Along with the data on soil carbon for the control and grazed plots,” he says, “we also collected a bunch of other information, such as the mean annual temperature of the site, mean annual precipitation, plant biomass, and properties of the soil, like pH and nitrogen content. And then, of course, we estimate the grazing intensity — aboveground biomass consumed, because that turns out to be the key parameter.”  

    With artificial intelligence models, the authors quantified the importance of each of these parameters, those drivers of intensity — temperature, precipitation, soil properties — in modulating the sign (positive or negative) and magnitude of the impact of grazing on soil carbon stocks. “Interestingly, we found soil carbon stocks increase and then decrease with grazing intensity, rather than the expected linear response,” says Ren.

    Having developed the model through AI methods and validated it, including by comparing its predictions with those based on underlying physical principles, they can then apply the model to estimating both past and future effects. “In this case,” Terrer says, “we use the model to quantify the historical loses in soil carbon stocks from grazing. And we found that 46 petagrams [billion metric tons] of soil carbon, down to a depth of one meter, have been lost in the last few decades due to grazing.”

    By way of comparison, the total amount of greenhouse gas emissions per year from all fossil fuels is about 10 petagrams, so the loss from grazing equals more than four years’ worth of all the world’s fossil emissions combined.

    What they found was “an overall decline in soil carbon stocks, but with a lot of variability.” Terrer says. The analysis showed that the interplay between grazing intensity and environmental conditions such as temperature could explain the variability, with higher grazing intensity and hotter climates resulting in greater carbon loss. “This means that policy-makers should take into account local abiotic and biotic factors to manage rangelands efficiently,” Ren notes. “By ignoring such complex interactions, we found that using IPCC [Intergovernmental Panel on Climate Change] guidelines would underestimate grazing-induced soil carbon loss by a factor of three globally.”

    Using an approach that incorporates local environmental conditions, the team produced global, high-resolution maps of optimal grazing intensity and the threshold of intensity at which carbon starts to decrease very rapidly. These maps are expected to serve as important benchmarks for evaluating existing grazing practices and provide guidance to local farmers on how to effectively manage their grazing lands.

    Then, using that map, the team estimated how much carbon could be captured if all grazing lands were limited to their optimum grazing intensity. Currently, the authors found, about 20 percent of all pasturelands have crossed the thresholds, leading to severe carbon losses. However, they found that under the optimal levels, global grazing lands would sequester 63 petagrams of carbon. “It is amazing,” Ren says. “This value is roughly equivalent to a 30-year carbon accumulation from global natural forest regrowth.”

    That would be no simple task, of course. To achieve optimal levels, the team found that approximately 75 percent of all grazing areas need to reduce grazing intensity. Overall, if the world seriously reduces the amount of grazing, “you have to reduce the amount of meat that’s available for people,” Terrer says.

    “Another option is to move cattle around,” he says, “from areas that are more severely affected by grazing intensity, to areas that are less affected. Those rotations have been suggested as an opportunity to avoid the more drastic declines in carbon stocks without necessarily reducing the availability of meat.”

    This study didn’t delve into these social and economic implications, Terrer says. “Our role is to just point out what would be the opportunity here. It shows that shifts in diets can be a powerful way to mitigate climate change.”

    “This is a rigorous and careful analysis that provides our best look to date at soil carbon changes due to livestock grazing practiced worldwide,” say Ben Bond-Lamberty, a terrestrial ecosystem research scientist at Pacific Northwest National Laboratory, who was not associated with this work. “The authors’ analysis gives us a unique estimate of soil carbon losses due to grazing and, intriguingly, where and how the process might be reversed.”

    He adds: “One intriguing aspect to this work is the discrepancies between its results and the guidelines currently used by the IPCC — guidelines that affect countries’ commitments, carbon-market pricing, and policies.” However, he says, “As the authors note, the amount of carbon historically grazed soils might be able to take up is small relative to ongoing human emissions. But every little bit helps!”

    “Improved management of working lands can be a powerful tool to combat climate change,” says Jonathan Sanderman, carbon program director of the Woodwell Climate Research Center in Falmouth, Massachusetts, who was not associated with this work. He adds, “This work demonstrates that while, historically, grazing has been a large contributor to climate change, there is significant potential to decrease the climate impact of livestock by optimizing grazing intensity to rebuild lost soil carbon.”

    Terrer states that for now, “we have started a new study, to evaluate the consequences of shifts in diets for carbon stocks. I think that’s the million-dollar question: How much carbon could you sequester, compared to business as usual, if diets shift to more vegan or vegetarian?” The answers will not be simple, because a shift to more vegetable-based diets would require more cropland, which can also have different environmental impacts. Pastures take more land than crops, but produce different kinds of emissions. “What’s the overall impact for climate change? That is the question we’re interested in,” he says.

    The research team included Juan Li, Yingfao Cao, Sheshan Yang, and Dan Liu, all with the  Chinese Academy of Sciences. The work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program, and the Science and Technology Major Project of Tibetan Autonomous Region of China. More

  • in

    Local journalism is a critical “gate” to engage Americans on climate change

    Last year, Pew Research Center data revealed that only 37 percent of Americans said addressing climate change should be a top priority for the president and Congress. Furthermore, climate change was ranked 17th out of 21 national issues included in a Pew survey. 

    But in reality, it’s not that Americans don’t care about climate change, says celebrated climate scientist and communicator MIT Professor Katharine Hayhoe. It’s that they don’t know that they already do. 

    To get Americans to care about climate change, she adds, it’s imperative to guide them to their gate. At first, it might not be clear where that gate is. But it exists. 

    That message was threaded through the Connecting with Americans on Climate Change webinar last fall, which featured a discussion with Hayhoe and the five journalists who made up the 2023 cohort of the MIT Environmental Solutions Journalism Fellowship. Hayhoe referred to a “gate” as a conversational entry point about climate impacts and solutions. The catch? It doesn’t have to be climate-specific. Instead, it can focus on the things that people already hold close to their heart.

    “If you show people … whether it’s a military veteran or a parent or a fiscal conservative or somebody who is in a rural farming area or somebody who loves kayaking or birds or who just loves their kids … how they’re the perfect person to care [about climate change], then it actually enhances their identity to advocate for and adopt climate solutions,” said Hayhoe. “It makes them a better parent, a more frugal fiscal conservative, somebody who’s more invested in the security of their country. It actually enhances who they already are instead of trying to turn them into someone else.”

    The MIT Environmental Solutions Journalism Fellowship provides financial and technical support to journalists dedicated to connecting local stories to broader climate contexts, especially in parts of the country where climate change is disputed or underreported. 

    Climate journalism is typically limited to larger national news outlets that have the resources to employ dedicated climate reporters. And since many local papers are already struggling — with the country on track to lose a third of its papers by the end of next year, leaving over 50 percent of counties in the United States with just one or no local news outlets — local climate beats can be neglected. This makes the work executed by the ESI’s fellows all the more imperative. Because for many Americans, the relevance of these stories to their own community is their gate to climate action. 

    “This is the only climate journalism fellowship that focuses exclusively on local storytelling,” says Laur Hesse Fisher, program director at MIT ESI and founder of the fellowship. “It’s a model for engaging some of the hardest audiences to reach: people who don’t think they care much about climate change. These talented journalists tell powerful, impactful stories that resonate directly with these audiences.”

    From March to June, the second cohort of ESI Journalism Fellows pursued local, high-impact climate reporting in Montana, Arizona, Maine, West Virginia, and Kentucky. 

    Collectively, their 26 stories had over 70,000 direct visits on their host outlets’ websites as of August 2023, gaining hundreds of responses from local voters, lawmakers, and citizen groups. Even though they targeted local audiences, they also had national appeal, as they were republished by 46 outlets — including Vox, Grist, WNYC, WBUR, the NPR homepage, and three separate stories on NPR’s “Here & Now” program, which is broadcast by 45 additional partner radio stations across the country — with a collective reach in the hundreds of thousands. 

    Micah Drew published an eight-part series in The Flathead Beacon titled, “Montana’s Climate Change Lawsuit.” It followed a landmark case of 16 young people in Montana suing the state for violating their right to a “clean and healthful environment.” Of the plaintiffs, Drew said, “They were able to articulate very clearly what they’ve seen, what they’ve lived through in a pretty short amount of life. Some of them talked about wildfires — which we have a lot of here in Montana — and [how] wildfire smoke has canceled soccer games at the high school level. It cancels cross-country practice; it cancels sporting events. I mean, that’s a whole section of your livelihood when you’re that young that’s now being affected.”

    Joan Meiners is a climate news reporter for the Arizona Republic. Her five-part series was situated at the intersection of Phoenix’s extreme heat and housing crises. “I found that we are building three times more sprawling, single-family detached homes … as the number of apartment building units,” she says. “And with an affordability crisis, with a climate crisis, we really need to rethink that. The good news, which I also found through research for this series … is that Arizona doesn’t have a statewide building code, so each municipality decides on what they’re going to require builders to follow … and there’s a lot that different municipalities can do just by showing up to their city council meetings [and] revising the building codes.”

    For The Maine Monitor, freelance journalist Annie Ropeik generated a four-part series, called “Hooked on Heating Oil,” on how Maine came to rely on oil for home heating more than any other state. When asked about solutions, Ropeik says, “Access to fossil fuel alternatives was really the central equity issue that I was looking at in my project, beyond just, ‘Maine is really relying on heating oil, that obviously has climate impacts, it’s really expensive.’ What does that mean for people in different financial situations, and what does that access to solutions look like for those different communities? What are the barriers there and how can we address those?”

    Energy and environment reporter Mike Tony created a four-part series in The Charleston Gazette-Mail on West Virginia’s flood vulnerabilities and the state’s lack of climate action. On connecting with audiences, Tony says, “The idea was to pick a topic like flooding that really affects the whole state, and from there, use that as a sort of an inroad to collect perspectives from West Virginians on how it’s affecting them. And then use that as a springboard to scrutinizing the climate politics that are precluding more aggressive action.”

    Finally, Ryan Van Velzer, Louisville Public Media’s energy and environment reporter, covered the decline of Kentucky’s fossil fuel industry and offered solutions for a sustainable future in a four-part series titled, “Coal’s Dying Light.” For him, it was “really difficult to convince people that climate change is real when the economy is fundamentally intertwined with fossil fuels. To a lot of these people, climate change, and the changes necessary to mitigate climate change, can cause real and perceived economic harm to these communities.” 

    With these projects in mind, someone’s gate to caring about climate change is probably nearby — in their own home, community, or greater region. 

    It’s likely closer than they think. 

    To learn more about the next fellowship cohort — which will support projects that report on climate solutions being implemented locally and how they reduce emissions while simultaneously solving pertinent local issues — sign up for the MIT Environmental Solutions Initiative newsletter. Questions about the fellowship can be directed to Laur Hesse Fisher at climate@mit.edu. More

  • in

    Faculty, staff, students to evaluate ways to decarbonize MIT’s campus

    With a goal to decarbonize the MIT campus by 2050, the Institute must look at “new ideas, transformed into practical solutions, in record time,” as stated in “Fast Forward: MIT’s Climate Action Plan for the Decade.” This charge calls on the MIT community to explore game-changing and evolving technologies with the potential to move campuses like MIT away from carbon emissions-based energy systems.

    To help meet this tremendous challenge, the Decarbonization Working Group — a new subset of the Climate Nucleus — recently launched. Comprised of appointed MIT faculty, researchers, and students, the working group is leveraging its members’ expertise to meet the charge of exploring and assessing existing and in-development solutions to decarbonize the MIT campus by 2050. The group is specifically charged with informing MIT’s efforts to decarbonize the campus’s district energy system.

    Co-chaired by Director of Sustainability Julie Newman and Department of Architecture Professor Christoph Reinhart, the working group includes members with deep knowledge of low- and zero-carbon technologies and grid-level strategies. In convening the group, Newman and Reinhart sought out members researching these technologies as well as exploring their practical use. “In my work on multiple projects on campus, I have seen how cutting-edge research often relies on energy-intensive equipment,” shares PhD student and group member Ippolyti Dellatolas. “It’s clear how new energy-efficiency strategies and technologies could use campus as a living lab and then broadly deploy these solutions across campus for scalable emissions reductions.” This approach is one of MIT’s strong suits and a recurring theme in its climate action plans — using the MIT campus as a test bed for learning and application. “We seek to study and analyze solutions for our campus, with the understanding that our findings have implications far beyond our campus boundaries,” says Newman.

    The efforts of the working group represent just one part of the multipronged approach to identify ways to decarbonize the MIT campus. The group will work in parallel and at times collaboratively with the team from the Office of the Vice President for Campus Services and Stewardship that is managing the development plan for potential zero-carbon pathways for campus buildings and the district energy system. In May 2023, MIT engaged Affiliated Engineers, Inc. (AEI), to support the Institute’s efforts to identify, evaluate, and model various carbon-reduction strategies and technologies to provide MIT with a series of potential decarbonization pathways. Each of the pathways must demonstrate how to manage the generation of energy and its distribution and use on campus. As MIT explores electrification, a significant challenge will be the availability of resilient clean power from the grid to help generate heat for our campus without reliance on natural gas.

    When the Decarbonization Working Group began work this fall, members took the time to learn more about current systems and baseline information. Beginning this month, members will organize analysis around each of their individual areas of expertise and interest and begin to evaluate existing and emerging carbon reduction technologies. “We are fortunate that there are constantly new ideas and technologies being tested in this space and that we have a committed group of faculty working together to evaluate them,” Newman says. “We are aware that not every technology is the right fit for our unique dense urban campus, and nor are we solving for a zero-carbon campus as an island, but rather in the context of an evolving regional power grid.”

    Supported by funding from the Climate Nucleus, evaluating technologies will include site visits to locations where priority technologies are currently deployed or being tested. These site visits may range from university campuses implementing district geothermal and heat pumps to test sites of deep geothermal or microgrid infrastructure manufacturers. “This is a unique moment for MIT to demonstrate leadership by combining best decarbonization practices, such as retrofitting building systems to achieve deep energy reductions and converting to low-temperature district heating systems with ‘nearly there’ technologies such as deep geothermal, micronuclear, energy storage, and ubiquitous occupancy-driven temperature control,” says Reinhart. “As first adopters, we can find out what works, allowing other campuses to follow us at reduced risks.”

    The findings and recommendations of the working group will be delivered in a report to the community at the end of 2024. There will be opportunities for the MIT community to learn more about MIT’s decarbonization efforts at community events on Jan. 24 and March 14, as well as MIT’s Sustainability Connect forum on Feb. 8. More

  • in

    Meeting the clean energy needs of tomorrow

    Yuri Sebregts, chief technology officer at Shell, succinctly laid out the energy dilemma facing the world over the rest of this century. On one hand, demand for energy is quickly growing as countries in the developing world modernize and the global population grows, with 100 gigajoules of energy per person needed annually to enable quality-of-life benefits and industrialization around the globe. On the other, traditional energy sources are quickly warming the planet, with the world already seeing the devastating effects of increasingly frequent extreme weather events. 

    While the goals of energy security and energy sustainability are seemingly at odds with one another, the two must be pursued in tandem, Sebregts said during his address at the MIT Energy Initiative Fall Colloquium.

    “An environmentally sustainable energy system that isn’t also a secure energy system is not sustainable,” Sebregts said. “And conversely, a secure energy system that is not environmentally sustainable will do little to ensure long-term energy access and affordability. Therefore, security and sustainability must go hand-in-hand. You can’t trade off one for the other.”

    Sebregts noted that there are several potential pathways to help strike this balance, including investments in renewable energy sources, the use of carbon offsets, and the creation of more efficient tools, products, and processes. However, he acknowledged that meeting growing energy demands while minimizing environmental impacts is a global challenge requiring an unprecedented level of cooperation among countries and corporations across the world. 

    “At Shell, we recognize that this will require a lot of collaboration between governments, businesses, and civil society,” Sebregts said. “That’s not always easy.”

    Global conflict and global warming

    In 2021, Sebregts noted, world leaders gathered in Glasgow, Scotland and collectively promised to deliver on the “stretch goal” of the 2015 Paris Agreement, which would limit global warming to 1.5 degrees Celsius — a level that scientists believe will help avoid the worst potential impacts of climate change. But, just a few months later, Russia invaded Ukraine, resulting in chaos in global energy markets and illustrating the massive impact that geopolitical friction can have on efforts to reduce carbon emissions.

    “Even though global volatility has been a near constant of this century, the situation in Ukraine is proving to be a turning point,” Sebregts said. “The stress it placed on the global supply of energy, food, and other critical materials was enormous.”

    In Europe, Sebregts noted, countries affected by the loss of Russia’s natural gas supply began importing from the Middle East and the United States. This, in turn, drove up prices. While this did result in some efforts to limit energy use, such as Europeans lowering their thermostats in the winter, it also caused some energy buyers to turn to coal. For instance, the German government approved additional coal mining to boost its energy security — temporarily reversing a decades-long transition away from the fuel. To put this into wider perspective, in a single quarter, China increased its coal generation capacity by as much as Germany had reduced its own over the previous 20 years.

    The promise of electrification

    Sebregts noted the strides being made toward electrification, which is expected to have a significant impact on global carbon emissions. To meet net-zero emissions (the point at which humans are adding no more carbon to the atmosphere than they are removing) by 2050, the share of electricity as a portion of total worldwide energy consumption must reach 37 percent by 2030, up from 20 percent in 2020, Sebregts said.

    He pointed out that Shell has become one of the world’s largest electric vehicle charging companies, with more than 30,000 public charge points. By 2025, that number will increase to 70,000, and it is expected to soar to 200,000 by 2030. While demand and infrastructure for electric vehicles are growing, Sebregts said that the “real needle-mover” will be industrial electrification, especially in so-called “hard-to-abate” sectors.

    This progress will depend heavily on global cooperation — Sebregts pointed out that China dominates the international market for many rare elements that are key components of electrification infrastructure. “It shouldn’t be a surprise that the political instability, shifting geopolitical tensions, and environmental and social governance issues are significant risks for the energy transition,” he said. “It is imperative that we reduce, control, and mitigate these risks as much as possible.”

    Two possible paths

    For decades, Sebregts said, Shell has created scenarios to help senior managers think through the long-term challenges facing the company. While Sebregts stressed that these scenarios are not predictions, they do take into account real-world conditions, and they are meant to give leaders the opportunity to grapple with plausible situations.

    With this in mind, Sebregts outlined Shell’s most recent Energy Security Scenarios, describing the potential future consequences of attempts to balance growing energy demand with sustainability — scenarios that envision vastly different levels of global cooperation, with huge differences in projected results. 

    The first scenario, dubbed “Archipelagos,” imagines countries pursuing energy security through self-interest — a fragmented, competitive process that would result in a global temperature increase of 2.2 degrees Celsius by the end of this century. The second scenario, “Sky 2050,” envisions countries around the world collaborating to change the energy system for their mutual benefit. This more optimistic scenario would see a much lower global temperature increase of 1.2 C by 2100.

    “The good news is that in both scenarios, the world is heading for net-zero emissions at some point,” Sebregts said. “The difference is a question of when it gets there. In Sky 2050, it is the middle of the century. In Archipelagos, it is early in the next century.”

    On the other hand, Sebregts added, the average global temperature will increase by more than 1.5 C for some period of time in either scenario. But, in the Archipelagos scenario, this overshoot will be much larger, and will take much longer to come down. “So, two very different futures,” Sebregts said. “Two very different worlds.”

    The work ahead

    Questioned about the costs of transitioning to a net-zero energy ecosystem, Sebregts said that it is “very hard” to provide an accurate answer. “If you impose an additional constraint … you’re going to have to add some level of cost,” he said. “But then, of course, there’s 30 years of technology development pathway that might counteract some of that.”

    In some cases, such as air travel, Sebregts said, it will likely remain impractical to either rely on electrification or sequester carbon at the source of emission. Direct air capture (DAC) methods, which mechanically pull carbon directly from the atmosphere, will have a role to play in offsetting these emissions, he said. Sebregts predicted that the price of DAC could come down significantly by the middle of this century. “I would venture that a price of $200 to $250 a ton of CO2 by 2050 is something that the world would be willing to spend, at least in developed economies, to offset those very hard-to-abate instances.”

    Sebregts noted that Shell is working on demonstrating DAC technologies in Houston, Texas, constructing what will become Europe’s largest hydrogen plant in the Netherlands, and taking other steps to profitably transition to a net-zero emissions energy company by 2050. “We need to understand what can help our customers transition quicker and how we can continue to satisfy their needs,” he said. “We must ensure that energy is affordable, accessible, and sustainable, as soon as possible.” More

  • in

    MIT startup has big plans to pull carbon from the air

    In order to avoid the worst effects of climate change, the United Nations has said we’ll need to not only reduce emissions but also remove carbon dioxide from the atmosphere. One method for achieving carbon removal is direct air capture and storage. Such technologies are still in their infancy, but many efforts are underway to scale them up quickly in hopes of heading off the most catastrophic effects of climate change.

    The startup Noya, founded by Josh Santos ’14, is working to accelerate direct-air carbon removal with a low-power, modular system that can be mass manufactured and deployed around the world. The company plans to power its system with renewable energy and build its facilities near injection wells to store carbon underground.

    Using third-party auditors to verify the amount of carbon dioxide captured and stored, Noya is selling carbon credits to help organizations reach net-zero emissions targets.

    “Think of our systems for direct air capture like solar panels for carbon negativity,” says Santos, who formerly played a role in Tesla’s much-publicized manufacturing scale-up for its Model 3 electric sedan. “We can stack these boxes in a LEGO-like fashion to achieve scale in the field.”

    The three-year old company is currently building its first commercial pilot facility, and says its first full-scale commercial facility will have the capacity to pull millions of tons of carbon from the air each year. Noya has already secured millions of dollars in presales to help build its first facilities from organizations including Shopify, Watershed, and a university endowment.

    Santos says the ambitious approach, which is driven by the urgent need to scale carbon removal solutions, was influenced by his time at MIT.

    “I need to thank all of my MIT professors,” Santos says. “I don’t think any of this would be possible without the way in which MIT opened up my horizons by showing me what’s possible when you work really hard.”

    Finding a purpose

    Growing up in the southeastern U.S., Santos says he first recognized climate change as an issue by experiencing the increasing intensity of hurricanes in his neighborhood. One year a hurricane forced his family to evacuate their town. When they returned, their church was gone.

    “The storm left a really big mark on me and how I thought about the world,” Santos says. “I realized how much climate change can impact people.”

    When Santos came to MIT as an undergraduate, he took coursework related to climate change and energy systems, eventually majoring in chemical engineering. He also learned about startups through courses he took at the MIT Sloan School of Management and by taking part in MIT’s Undergraduate Research Opportunities Program (UROP), which exposed him to researchers in the early stages of commercializing research from MIT labs.

    More than the coursework, though, Santos says MIT instilled in him a desire to make a positive impact on the world, in part through a four-day development workshop called LeaderShape that he took one January during the Institute’s Independent Activities Period (IAP).

    “LeaderShape teaches students how to lead with integrity, and the core lesson is that any privilege you have you should try to leverage to improve the lives of other people,” Santos says. “That really stuck with me. Going to MIT is a huge privilege, and it makes me feel like I have a responsibility to put that privilege to work to the betterment of society. It shaped a lot of how I view my career.”

    After graduation, Santos worked at Tesla, then at Harley Davidson, where he worked on electric powertrains. Eventually he decided electric vehicle technology couldn’t solve climate change on its own, so in the spring of 2020 he founded Noya with friend Daniel Cavaro.

    The initial idea for Noya was to attach carbon capture devices to cooling towers to keep equipment costs low. The founders pivoted in response to the passage of the Inflation Reduction Act in 2022 because their machines weren’t big enough to qualify for the new tax credits in the law, which required each system to capture at least 1,000 tons of CO2 per year.

    Noya’s new systems will combine thousands of its modular units to create massive facilities that can capture millions of tons of CO2 right next to existing injection wells.

    Each of Noya’s units is about the size of a solar panel at about 6 feet wide, 4.5 feet tall, and 1 foot thick. A fan blows air through tiny channels in each unit that contain Noya’s carbon capture material. The company’s material solution consists of an activated carbon monolith and a proprietary chemical feedstock that binds to the carbon in the air. When the material becomes saturated with carbon, electricity is applied to the material and a light vacuum collects a pure stream of carbon.

    The goal is for each of Noya’s modules to remove about 60 tons of CO2 from the atmosphere per year.

    “Other direct air capture companies need a big hot piece of equipment — like an oven, steam generator, or kiln — that takes electricity and converts it to get heat to the material,” Santos says. “Any lost heat into the surrounding environment is excess cost. We skip the need for the excess equipment and their inefficiencies by adding the electricity directly to the material itself.”

    Scaling with urgency

    From its office in Oakland, California, Noya is putting an experimental module through tests to optimize its design. Noya will launch its first testing facility, which should remove about 350 tons of CO2 per year, in 2024. It has already secured renewable energy and injection storage partners for that facility. Over the next few years Noya plans to capture and remove thousands of tons of CO2, and the company’s first commercial-scale facility will aim to remove about 3 million tons of carbon annually.

    “That design is what we’ll replicate across the world to grow our planetary impact,” Santos says. “We’re trying to scale up as fast as possible.”

    Noya has already sold all of the carbon credits it expects to generate in its first five years, and the founders believe the growing demand from companies and governments to purchase high-quality carbon credits will outstrip supply for at least the next 10 years in the nascent carbon removal industry, which also includes approaches like enhanced rock weathering, biomass carbon storage, and ocean alkalinity enhancement.

    “We’re going to need something like 30 companies the size of Shell to achieve the scale we need,” Santos says. “I think there will be large companies in each of those verticals. We’re in the early innings here.”

    Santos believes the carbon removal market can scale without government mandates, but he also sees increasing government and public support for carbon removal technologies around the world.

    “Carbon removal is a waste management problem,” Santos says. “You can’t just throw trash in the middle of the street. The way we currently deal with trash is polluters pay to clean up their waste. Carbon removal should be like that. CO2 is a waste product, and we should have regulations in place that are requiring polluters, like businesses, to clean up their waste emissions. It’s a public good to provide cleaner air.” More

  • in

    Engineers develop an efficient process to make fuel from carbon dioxide

    The search is on worldwide to find ways to extract carbon dioxide from the air or from power plant exhaust and then make it into something useful. One of the more promising ideas is to make it into a stable fuel that can replace fossil fuels in some applications. But most such conversion processes have had problems with low carbon efficiency, or they produce fuels that can be hard to handle, toxic, or flammable.

    Now, researchers at MIT and Harvard University have developed an efficient process that can convert carbon dioxide into formate, a liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity. Potassium or sodium formate, already produced at industrial scales and commonly used as a de-icer for roads and sidewalks, is nontoxic, nonflammable, easy to store and transport, and can remain stable in ordinary steel tanks to be used months, or even years, after its production.

    The new process, developed by MIT doctoral students Zhen Zhang, Zhichu Ren, and Alexander H. Quinn; Harvard University doctoral student Dawei Xi; and MIT Professor Ju Li, is described this week in an open-access paper in Cell Reports Physical Science. The whole process — including capture and electrochemical conversion of the gas to a solid formate powder, which is then used in a fuel cell to produce electricity — was demonstrated at a small, laboratory scale. However, the researchers expect it to be scalable so that it could provide emissions-free heat and power to individual homes and even be used in industrial or grid-scale applications.

    Other approaches to converting carbon dioxide into fuel, Li explains, usually involve a two-stage process: First the gas is chemically captured and turned into a solid form as calcium carbonate, then later that material is heated to drive off the carbon dioxide and convert it to a fuel feedstock such as carbon monoxide. That second step has very low efficiency, typically converting less than 20 percent of the gaseous carbon dioxide into the desired product, Li says.

    By contrast, the new process achieves a conversion of well over 90 percent and eliminates the need for the inefficient heating step by first converting the carbon dioxide into an intermediate form, liquid metal bicarbonate. That liquid is then electrochemically converted into liquid potassium or sodium formate in an electrolyzer that uses low-carbon electricity, e.g. nuclear, wind, or solar power. The highly concentrated liquid potassium or sodium formate solution produced can then be dried, for example by solar evaporation, to produce a solid powder that is highly stable and can be stored in ordinary steel tanks for up to years or even decades, Li says.

    Several steps of optimization developed by the team made all the difference in changing an inefficient chemical-conversion process into a practical solution, says Li, who holds joint appointments in the departments of Nuclear Science and Engineering and of Materials Science and Engineering.

    The process of carbon capture and conversion involves first an alkaline solution-based capture that concentrates carbon dioxide, either from concentrated streams such as from power plant emissions or from very low-concentration sources, even open air, into the form of a liquid metal-bicarbonate solution. Then, through the use of a cation-exchange membrane electrolyzer, this bicarbonate is electrochemically converted into solid formate crystals with a carbon efficiency of greater than 96 percent, as confirmed in the team’s lab-scale experiments.

    These crystals have an indefinite shelf life, remaining so stable that they could be stored for years, or even decades, with little or no loss. By comparison, even the best available practical hydrogen storage tanks allow the gas to leak out at a rate of about 1 percent per day, precluding any uses that would require year-long storage, Li says. Methanol, another widely explored alternative for converting carbon dioxide into a fuel usable in fuel cells, is a toxic substance that cannot easily be adapted to use in situations where leakage could pose a health hazard. Formate, on the other hand, is widely used and considered benign, according to national safety standards.

    Several improvements account for the greatly improved efficiency of this process. First, a careful design of the membrane materials and their configuration overcomes a problem that previous attempts at such a system have encountered, where a buildup of certain chemical byproducts changes the pH, causing the system to steadily lose efficiency over time. “Traditionally, it is difficult to achieve long-term, stable, continuous conversion of the feedstocks,” Zhang says. “The key to our system is to achieve a pH balance for steady-state conversion.”

    To achieve that, the researchers carried out thermodynamic modeling to design the new process so that it is chemically balanced and the pH remains at a steady state with no shift in acidity over time. It can therefore continue operating efficiently over long periods. In their tests, the system ran for over 200 hours with no significant decrease in output. The whole process can be done at ambient temperatures and relatively low pressures (about five times atmospheric pressure).

    Another issue was that unwanted side reactions produced other chemical products that were not useful, but the team figured out a way to prevent these side reactions by the introduction of an extra “buffer” layer of bicarbonate-enriched fiberglass wool that blocked these reactions.

    The team also built a fuel cell specifically optimized for the use of this formate fuel to produce electricity. The stored formate particles are simply dissolved in water and pumped into the fuel cell as needed. Although the solid fuel is much heavier than pure hydrogen, when the weight and volume of the high-pressure gas tanks needed to store hydrogen is considered, the end result is an electricity output near parity for a given storage volume, Li says.

    The formate fuel can potentially be adapted for anything from home-sized units to large scale industrial uses or grid-scale storage systems, the researchers say. Initial household applications might involve an electrolyzer unit about the size of a refrigerator to capture and convert the carbon dioxide into formate, which could be stored in an underground or rooftop tank. Then, when needed, the powdered solid would be mixed with water and fed into a fuel cell to provide power and heat. “This is for community or household demonstrations,” Zhang says, “but we believe that also in the future it may be good for factories or the grid.”

    “The formate economy is an intriguing concept because metal formate salts are very benign and stable, and a compelling energy carrier,” says Ted Sargent, a professor of chemistry and of electrical and computer engineering at Northwestern University, who was not associated with this work. “The authors have demonstrated enhanced efficiency in liquid-to-liquid conversion from bicarbonate feedstock to formate, and have demonstrated these fuels can be used later to produce electricity,” he says.

    The work was supported by the U.S. Department of Energy Office of Science. More

  • in

    Study suggests energy-efficient route to capturing and converting CO2

    In the race to draw down greenhouse gas emissions around the world, scientists at MIT are looking to carbon-capture technologies to decarbonize the most stubborn industrial emitters.

    Steel, cement, and chemical manufacturing are especially difficult industries to decarbonize, as carbon and fossil fuels are inherent ingredients in their production. Technologies that can capture carbon emissions and convert them into forms that feed back into the production process could help to reduce the overall emissions from these “hard-to-abate” sectors.

    But thus far, experimental technologies that capture and convert carbon dioxide do so as two separate processes, that themselves require a huge amount of energy to run. The MIT team is looking to combine the two processes into one integrated and far more energy-efficient system that could potentially run on renewable energy to both capture and convert carbon dioxide from concentrated, industrial sources.

    In a study appearing today in ACS Catalysis, the researchers reveal the hidden functioning of how carbon dioxide can be both captured and converted through a single electrochemical process. The process involves using an electrode to attract carbon dioxide released from a sorbent, and to convert it into a reduced, reusable form.

    Others have reported similar demonstrations, but the mechanisms driving the electrochemical reaction have remained unclear. The MIT team carried out extensive experiments to determine that driver, and found that, in the end, it came down to the partial pressure of carbon dioxide. In other words, the more pure carbon dioxide that makes contact with the electrode, the more efficiently the electrode can capture and convert the molecule.

    Knowledge of this main driver, or “active species,” can help scientists tune and optimize similar electrochemical systems to efficiently capture and convert carbon dioxide in an integrated process.

    The study’s results imply that, while these electrochemical systems would probably not work for very dilute environments (for instance, to capture and convert carbon emissions directly from the air), they would be well-suited to the highly concentrated emissions generated by industrial processes, particularly those that have no obvious renewable alternative.

    “We can and should switch to renewables for electricity production. But deeply decarbonizing industries like cement or steel production is challenging and will take a longer time,” says study author Betar Gallant, the Class of 1922 Career Development Associate Professor at MIT. “Even if we get rid of all our power plants, we need some solutions to deal with the emissions from other industries in the shorter term, before we can fully decarbonize them. That’s where we see a sweet spot, where something like this system could fit.”

    The study’s MIT co-authors are lead author and postdoc Graham Leverick and graduate student Elizabeth Bernhardt, along with Aisyah Illyani Ismail, Jun Hui Law, Arif Arifutzzaman, and Mohamed Kheireddine Aroua of Sunway University in Malaysia.

    Breaking bonds

    Carbon-capture technologies are designed to capture emissions, or “flue gas,” from the smokestacks of power plants and manufacturing facilities. This is done primarily using large retrofits to funnel emissions into chambers filled with a “capture” solution — a mix of amines, or ammonia-based compounds, that chemically bind with carbon dioxide, producing a stable form that can be separated out from the rest of the flue gas.

    High temperatures are then applied, typically in the form of fossil-fuel-generated steam, to release the captured carbon dioxide from its amine bond. In its pure form, the gas can then be pumped into storage tanks or underground, mineralized, or further converted into chemicals or fuels.

    “Carbon capture is a mature technology, in that the chemistry has been known for about 100 years, but it requires really large installations, and is quite expensive and energy-intensive to run,” Gallant notes. “What we want are technologies that are more modular and flexible and can be adapted to more diverse sources of carbon dioxide. Electrochemical systems can help to address that.”

    Her group at MIT is developing an electrochemical system that both recovers the captured carbon dioxide and converts it into a reduced, usable product. Such an integrated system, rather than a decoupled one, she says, could be entirely powered with renewable electricity rather than fossil-fuel-derived steam.

    Their concept centers on an electrode that would fit into existing chambers of carbon-capture solutions. When a voltage is applied to the electrode, electrons flow onto the reactive form of carbon dioxide and convert it to a product using protons supplied from water. This makes the sorbent available to bind more carbon dioxide, rather than using steam to do the same.

    Gallant previously demonstrated this electrochemical process could work to capture and convert carbon dioxide into a solid carbonate form.

    “We showed that this electrochemical process was feasible in very early concepts,” she says. “Since then, there have been other studies focused on using this process to attempt to produce useful chemicals and fuels. But there’s been inconsistent explanations of how these reactions work, under the hood.”

    Solo CO2

    In the new study, the MIT team took a magnifying glass under the hood to tease out the specific reactions driving the electrochemical process. In the lab, they generated amine solutions that resemble the industrial capture solutions used to extract carbon dioxide from flue gas. They methodically altered various properties of each solution, such as the pH, concentration, and type of amine, then ran each solution past an electrode made from silver — a metal that is widely used in electrolysis studies and known to efficiently convert carbon dioxide to carbon monoxide. They then measured the concentration of carbon monoxide that was converted at the end of the reaction, and compared this number against that of every other solution they tested, to see which parameter had the most influence on how much carbon monoxide was produced.

    In the end, they found that what mattered most was not the type of amine used to initially capture carbon dioxide, as many have suspected. Instead, it was the concentration of solo, free-floating carbon dioxide molecules, which avoided bonding with amines but were nevertheless present in the solution. This “solo-CO2” determined the concentration of carbon monoxide that was ultimately produced.

    “We found that it’s easier to react this ‘solo’ CO2, as compared to CO2 that has been captured by the amine,” Leverick offers. “This tells future researchers that this process could be feasible for industrial streams, where high concentrations of carbon dioxide could efficiently be captured and converted into useful chemicals and fuels.”

    “This is not a removal technology, and it’s important to state that,” Gallant stresses. “The value that it does bring is that it allows us to recycle carbon dioxide some number of times while sustaining existing industrial processes, for fewer associated emissions. Ultimately, my dream is that electrochemical systems can be used to facilitate mineralization, and permanent storage of CO2 — a true removal technology. That’s a longer-term vision. And a lot of the science we’re starting to understand is a first step toward designing those processes.”

    This research is supported by Sunway University in Malaysia. More

  • in

    3 Questions: Boosting concrete’s ability to serve as a natural “carbon sink”

    Damian Stefaniuk is a postdoc at the MIT Concrete Sustainability Hub (CSHub). He works with MIT professors Franz-Josef Ulm and Admir Masic of the MIT Department of Civil and Environmental Engineering (CEE) to investigate multifunctional concrete. Here, he provides an overview of carbonation in cement-based products, a brief explanation of why understanding carbonation in the life cycle of cement products is key for assessing their environmental impact, and an update on current research to bolster the process.

    Q: What is carbonation and why is it important for thinking about concrete from a life-cycle perspective?

    A: Carbonation is the reaction between carbon dioxide (CO2) and certain compounds in cement-based products, occurring during their use phase and end of life. It forms calcium carbonate (CaCO3) and has important implications for neutralizing the GHG [greenhouse gas] emissions and achieving carbon neutrality in the life cycle of concrete.

    Firstly, carbonation causes cement-based products to act as natural carbon sinks, sequestering CO2 from the air and storing it permanently. This helps mitigate the carbon emissions associated with the production of cement, reducing their overall carbon footprint.

    Secondly, carbonation affects concrete properties. Early-stage carbonation may increase the compressive strength of cement-based products, enhancing their durability and structural performance. However, late-stage carbonation can impact corrosion resistance in steel-reinforced concrete due to reduced alkalinity.

    Considering carbonation in the life cycle of cement-based products is crucial for accurately assessing their environmental impact. Understanding and leveraging carbonation can help industry reduce carbon emissions and maximize carbon sequestration potential. Paying close attention to it in the design process aids in creating durable and corrosion-resistant structures, contributing to longevity and overall sustainability.

    Q: What are some ongoing global efforts to force carbonation?

    A: Some ongoing efforts to force carbonation in concrete involve artificially increasing the amount of CO2 gas present during the early-stage hydration of concrete. This process, known as forced carbonation, aims to accelerate the carbonation reaction and its associated benefits.

    Forced carbonation is typically applied to precast concrete elements that are produced in artificially CO2-rich environments. By exposing fresh concrete to higher concentrations of CO2 during curing, the carbonation process can be expedited, resulting in potential improvements in strength, reduced water absorption, improved resistance to chloride permeability, and improved performance during freeze-thaw. At the same time, it can be difficult to quantify how much CO2 is absorbed and released because of the process.

    These efforts to induce early-stage carbonation through forced carbonation represent the industry’s focus on optimizing concrete performance and environmental impacts. By exploring methods to enhance the carbonation process, researchers and practitioners seek to more efficiently harness its benefits, such as increasing strength and sequestering CO2.

    It is important to note that forced carbonation requires careful implementation and monitoring to ensure desired outcomes. The specific procedures and conditions vary based on the application and intended goals, highlighting the need for expertise and controlled environments.

    Overall, ongoing efforts in forced carbonation contribute to the continuous development of concrete technology, aiming to improve its properties and reduce its carbon footprint throughout the life cycle of the material.

    Q: What is chemically-induced pre-cure carbonation, and what implications does it have?

    A: Chemically-induced pre-cure carbonation (CIPCC) is a method developed by the MIT CSHub to mineralize and permanently store CO2 in cement. Unlike traditional forced carbonation methods, CIPCC introduces CO2 into the concrete mix as a solid powder, specifically sodium bicarbonate. This approach addresses some of the limitations of current carbon capture and utilization technologies.

    The implications of CIPCC are significant. Firstly, it offers convenience for cast-in-place applications, making it easier to incorporate CO2 use in concrete projects. Unlike some other approaches, CIPCC allows for precise control over the quantity of CO2 sequestered in the concrete. This ensures accurate carbonation and facilitates better management of the storage process. CIPCC also builds on previous research regarding amorphous hydration phases, providing an additional mechanism for CO2 sequestration in cement-based products. These phases carbonate through CIPCC, contributing to the overall carbon sequestration capacity of the material.

    Furthermore, early-stage pre-cure carbonation shows promise as a pathway for concrete to permanently sequester a controlled and precise quantity of CO2. Our recent paper in PNAS Nexus suggests that it could theoretically offset at least 40 percent of the calcination emissions associated with cement production, when anticipating advances in the lower-emissions production of sodium bicarbonate. We also found that up to 15 percent of cement (by weight) could be substituted with sodium bicarbonate without compromising the mechanical performance of a given mix. Further research is needed to evaluate long-term effects of this process to explore the potential life-cycle savings and impacts of carbonation.

    CIPCC offers not only environmental benefits by reducing carbon emissions, but also practical advantages. The early-stage strength increase observed in real-world applications could expedite construction timelines by allowing concrete to reach its full strength faster.

    Overall, CIPCC demonstrates the potential for more efficient and controlled CO2 sequestration in concrete. It represents an important development in concrete sustainability, emphasizing the need for further research and considering the material’s life-cycle impacts.

    This research was carried out by MIT CSHub, which is sponsored by the Concrete Advancement Foundation and the Portland Cement Association. More