More stories

  • in

    At Climate Grand Challenges showcase event, an exploration of how to accelerate breakthrough solutions

    On the eve of Earth Day, more than 300 faculty, researchers, students, government officials, and industry leaders gathered in the Samberg Conference Center, along with thousands more who tuned in online, to celebrate MIT’s first-ever Climate Grand Challenges and the five most promising concepts to emerge from the two-year competition.

    The event began with a climate policy conversation between MIT President L. Rafael Reif and Special Presidential Envoy for Climate John Kerry, followed by presentations from each of the winning flagship teams, and concluded with an expert panel that explored pathways for moving from ideas to impact at scale as quickly as possible.

    “In 2020, when we launched the Climate Grand Challenges, we wanted to focus the daring creativity and pioneering expertise of the MIT community on the urgent problem of climate change,” said President Reif in kicking off the event. “Together these flagship projects will define a transformative new research agenda at MIT, one that has the potential to make meaningful contributions to the global climate response.”

    Reif and Kerry discussed multiple aspects of the climate crisis, including mitigation, adaptation, and the policies and strategies that can help the world avert the worst consequences of climate change and make the United States a leader again in bringing technology into commercial use. Referring to the accelerated wartime research effort that helped turn the tide in World War II, which included work conducted at MIT, Kerry said, “We need about five Manhattan Projects, frankly.”

    “People are now sensing a much greater urgency to finding solutions — new technology — and taking to scale some of the old technologies,” Kerry said. “There are things that are happening that I think are exciting, but the problem is it’s not happening fast enough.”

    Strategies for taking technology from the lab to the marketplace were the basis for the final portion of the event. The panel was moderated by Alicia Barton, president and CEO of FirstLight Power, and included Manish Bapna, president and CEO of the Natural Resources Defense Council; Jack Little, CEO and co-founder of MathWorks; Arati Prabhakar, president of Actuate and former head of the Defense Advanced Research Projects Agency; and Katie Rae, president and managing director of The Engine. The discussion touched upon the importance of marshaling the necessary resources and building the cross-sector partnerships required to scale the technologies being developed by the flagship teams and to deliver them to the world in time to make a difference. 

    “MIT doesn’t sit on its hands ever, and innovation is central to its founding,” said Rae. “The students coming out of MIT at every level, along with the professors, have been committed to these challenges for a long time and therefore will have a big impact. These flagships have always been in process, but now we have an extraordinary moment to commercialize these projects.”

    The panelists weighed in on how to change the mindset around finance, policy, business, and community adoption to scale massive shifts in energy generation, transportation, and other major carbon-emitting industries. They stressed the importance of policies that address the economic, equity, and public health impacts of climate change and of reimagining supply chains and manufacturing to grow and distribute these technologies quickly and affordably. 

    “We are embarking on five adventures, but we do not know yet, cannot know yet, where these projects will take us,” said Maria Zuber, MIT’s vice president for research. “These are powerful and promising ideas. But each one will require focused effort, creative and interdisciplinary teamwork, and sustained commitment and support if they are to become part of the climate and energy revolution that the world urgently needs. This work begins now.” 

    Zuber called for investment from philanthropists and financiers, and urged companies, governments, and others to join this all-of-humanity effort. Associate Provost for International Activities Richard Lester echoed this message in closing the event. 

    “Every one of us needs to put our shoulder to the wheel at the points where our leverage is maximized — where we can do what we’re best at,” Lester said. “For MIT, Climate Grand Challenges is one of those maximum leverage points.” More

  • in

    A community approach to improving the health of the planet

    Earlier this month, MIT’s Department of Mechanical Engineering (MechE) hosted a Health of the Planet Showcase. The event was the culmination of a four-year long community initiative to focus on what the mechanical engineering community at MIT can do to solve some of the biggest challenges the planet faces on a local and global scale. Structured like an informal poster session, the event marked the first time that administrative staff joined students, researchers, and postdocs in sharing their own research.

    When Evelyn Wang started her tenure as mechanical engineering department head in July 2018, she and associate department heads Pierre Lermusiaux and Rohit Karnik made the health of the planet a top priority for the department. Their goal was to bring students, faculty, and staff together to develop solutions that address the many problems related to the health of the planet.

    “As a field, mechanical engineering is unique in its diversity,” says Wang, the Ford Professor of Engineering. “We have researchers who are world-leading experts on desalination, ocean engineering, energy storage, and photovoltaics, just to name a few. One of our driving motivations has been getting those experts to collaborate and work on new health of the planet research projects together.”

    Wang also saw an opportunity to tap into the passions of the department’s students and staff, many of whom devote their extracurricular and personal time to environmental causes. She enlisted the help of a team of faculty and staff to launch what has become known as the MechE Health of the Planet Initiative.

    The initiative, which capitalizes on the diverse range of research fields in mechanical engineering, encouraged both grand research ideas that could have impact on a global scale, and smaller personal habits that could help on a smaller scale.

    “We wanted to encourage everyone in our community to think about their daily routine and make small changes that really add up over time,” says Dorothy Hanna, program administrator at MIT and one of the staff members leading the initiative.

    The Health of the Planet team started small. They hosted an office supply swap day to encourage recycling and reuse of everyday office products. This idea expanded to include the launch of “Lab Reuse Days.” Members of the Rohsenow Kendall Lab, including members of the research groups of professors Gang Chen, John Lienhard, and Evelyn Wang, gathered extra materials for reuse. Researchers from other labs picked up Arduino kits, tubing, and electrical wiring to use for their own projects.

    While individuals were encouraged to adopt small habits at home and at work to help the health of the planet, research teams were encouraged to work together on solutions on a larger scale.

    Seed funding for collaborative research

    In early 2020, the MIT Department of Mechanical Engineering launched a new collaborative seed research program based on funding from MathWorks, the computing software company that developed MATLAB. The first seed funding supported health of the planet research projects led by two or more mechanical engineering faculty members.

    “One of the driving goals of MechE has been fostering collaborations and supporting interdisciplinary research on the grand challenges our world faces,” says Pierre Lermusiaux, the Nam P. Suh Professor and associate department head for operations. “The seed funding from MathWorks was a great opportunity to build upon the diverse expertise and creativity our researchers have to address health of the planet related issues.” 

    The research projects supported by the seed funding ranged from lithium-ion batteries for electric vehicles to high-performance household energy products for low- and middle-income countries. Each project differs in scope and application, and draws upon the expertise of at least two different research groups at MIT.

    Throughout the past two years, faculty presented about these research projects in several community seminars. They also participated in a full-day faculty research retreat focused on health of the planet research that included presentations from local Cambridge and Boston city leaders, as well as experts from other MIT departments and Harvard University.

    These projects have helped break down barriers and increased collaboration among research groups that focus on different areas. The third round of seed funding for collaborative research projects was recently announced and new projects will be chosen in the coming weeks.

    A community showcase

    Upon returning to the campus last fall, the Health of the Planet team began planning an event to bring the community together and celebrate the department’s research efforts. The Health of the Planet Showcase, which took place on April 4, featured 26 presenters from across the mechanical engineering community at MIT.

    Projects included a marine coastal monitoring robot, solar hydrogen production with thermochemical cycles, and a portable atmospheric water extractor for dry climates. Among the presenters was Administrative Assistant Tony Pulsone, who presented on how honeybees navigate their surroundings, as well as program manager Theresa Werth and program administrator Dorothy Hanna, who presented on reducing bottled water use and practical strategies developed by staff to overcome functional barriers on campus.

    The event concluded with the announcement of the Fay and Alfred D. Chandler Jr. Research Fellowship, awarded to a MechE student-led effort to propose a new paradigm to improve the health of our planet. Graduate student Charlene Xia won for her work developing a real-time opto-fluidics system for monitoring the soil microbiome.

    “The soil microbiome governs the biogeochemical cycling of macronutrients, micronutrients, and other elements vital for the growth of plants and animal life,” Xia said. “Understanding and predicting the impact of climate change on soil microbiomes and the ecosystem services they provide present a grand challenge and major opportunity.”

    The Chandler Fellowship will continue during the 2022-23 academic year, when another student-led project will be chosen. The department also hopes to make the Health of the Planet Showcase an annual gathering.

    “The showcase was such a vibrant event,” adds Wang. “It really energized the department and renewed our commitment to growing community efforts and continuing to advance research to help improve and protect the health of our planet.” More

  • in

    Empowering people to adapt on the frontlines of climate change

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the fifth in a five-part series highlighting the most promising concepts to emerge from the competition and the interdisciplinary research teams behind them.

    In the coastal south of Bangladesh, rice paddies that farmers could once harvest three times a year lie barren. Sea-level rise brings saltwater to the soil, ruining the staple crop. It’s one of many impacts, and inequities, of climate change. Despite producing less than 1 percent of global carbon emissions, Bangladesh is suffering more than most countries. Rising seas, heat waves, flooding, and cyclones threaten 90 million people.

    A platform being developed in a collaboration between MIT and BRAC, a Bangladesh-based global development organization, aims to inform and empower climate-threatened communities to proactively adapt to a changing future. Selected as one of five MIT Climate Grand Challenges flagship projects, the Climate Resilience Early Warning System (CREWSnet) will forecast the local impacts of climate change on people’s lives, homes, and livelihoods. These forecasts will guide BRAC’s development of climate-resiliency programs to help residents prepare for and adapt to life-altering conditions.

    “The communities that CREWSnet will focus on have done little to contribute to the problem of climate change in the first place. However, because of socioeconomic situations, they may be among the most vulnerable. We hope that by providing state-of-the-art projections and sharing them broadly with communities, and working through partners like BRAC, we can help improve the capacity of local communities to adapt to climate change, significantly,” says Elfatih Eltahir, the H.M. King Bhumibol Professor in the Department of Civil and Environmental Engineering.

    Eltahir leads the project with John Aldridge and Deborah Campbell in the Humanitarian Assistance and Disaster Relief Systems Group at Lincoln Laboratory. Additional partners across MIT include the Center for Global Change Science; the Department of Earth, Atmospheric and Planetary Sciences; the Joint Program on the Science and Policy of Global Change; and the Abdul Latif Jameel Poverty Action Lab. 

    Predicting local risks

    CREWSnet’s forecasts rely upon a sophisticated model, developed in Eltahir’s research group over the past 25 years, called the MIT Regional Climate Model. This model zooms in on climate processes at local scales, at a resolution as granular as 6 miles. In Bangladesh’s population-dense cities, a 6-mile area could encompass tens, or even hundreds, of thousands of people. The model takes into account the details of a region’s topography, land use, and coastline to predict changes in local conditions.

    When applying this model over Bangladesh, researchers found that heat waves will get more severe and more frequent over the next 30 years. In particular, wet-bulb temperatures, which indicate the ability for humans to cool down by sweating, will rise to dangerous levels rarely observed today, particularly in western, inland cities.

    Such hot spots exacerbate other challenges predicted to worsen near Bangladesh’s coast. Rising sea levels and powerful cyclones are eroding and flooding coastal communities, causing saltwater to surge into land and freshwater. This salinity intrusion is detrimental to human health, ruins drinking water supplies, and harms crops, livestock, and aquatic life that farmers and fishermen depend on for food and income.

    CREWSnet will fuse climate science with forecasting tools that predict the social and economic impacts to villages and cities. These forecasts — such as how often a crop season may fail, or how far floodwaters will reach — can steer decision-making.

    “What people need to know, whether they’re a governor or head of a household, is ‘What is going to happen in my area, and what decisions should I make for the people I’m responsible for?’ Our role is to integrate this science and technology together into a decision support system,” says Aldridge, whose group at Lincoln Laboratory specializes in this area. Most recently, they transitioned a hurricane-evacuation planning system to the U.S. government. “We know that making decisions based on climate change requires a deep level of trust. That’s why having a powerful partner like BRAC is so important,” he says.

    Testing interventions

    Established 50 years ago, just after Bangladesh’s independence, BRAC works in every district of the nation to provide social services that help people rise from extreme poverty. Today, it is one of the world’s largest nongovernmental organizations, serving 110 million people across 11 countries in Asia and Africa, but its success is cultivated locally.

    “BRAC is thrilled to partner with leading researchers at MIT to increase climate resilience in Bangladesh and provide a model that can be scaled around the globe,” says Donella Rapier, president and CEO of BRAC USA. “Locally led climate adaptation solutions that are developed in partnership with communities are urgently needed, particularly in the most vulnerable regions that are on the frontlines of climate change.”

    CREWSnet will help BRAC identify communities most vulnerable to forecasted impacts. In these areas, they will share knowledge and innovate or bolster programs to improve households’ capacity to adapt.

    Many climate initiatives are already underway. One program equips homes to filter and store rainwater, as salinity intrusion makes safe drinking water hard to access. Another program is building resilient housing, able to withstand 120-mile-per-hour winds, that can double as local shelters during cyclones and flooding. Other services are helping farmers switch to different livestock or crops better suited for wetter or saltier conditions (e.g., ducks instead of chickens, or salt-tolerant rice), providing interest-free loans to enable this change.

    But adapting in place will not always be possible, for example in areas predicted to be submerged or unbearably hot by midcentury. “Bangladesh is working on identifying and developing climate-resilient cities and towns across the country, as closer-by alternative destinations as compared to moving to Dhaka, the overcrowded capital of Bangladesh,” says Campbell. “CREWSnet can help identify regions better suited for migration, and climate-resilient adaptation strategies for those regions.” At the same time, BRAC’s Climate Bridge Fund is helping to prepare cities for climate-induced migration, building up infrastructure and financial services for people who have been displaced.

    Evaluating impact

    While CREWSnet’s goal is to enable action, it can’t quite measure the impact of those actions. The Abdul Latif Jameel Poverty Action Lab (J-PAL), a development economics program in the MIT School of Humanities, Arts, and Social Sciences, will help evaluate the effectiveness of the climate-adaptation programs.

    “We conduct randomized controlled trials, similar to medical trials, that help us understand if a program improved people’s lives,” says Claire Walsh, the project director of the King Climate Action Initiative at J-PAL. “Once CREWSnet helps BRAC implement adaptation programs, we will generate scientific evidence on their impacts, so that BRAC and CREWSnet can make a case to funders and governments to expand effective programs.”

    The team aspires to bring CREWSnet to other nations disproportionately impacted by climate change. “Our vision is to have this be a globally extensible capability,” says Campbell. CREWSnet’s name evokes another early-warning decision-support system, FEWSnet, that helped organizations address famine in eastern Africa in the 1980s. Today it is a pillar of food-security planning around the world.

    CREWSnet hopes for a similar impact in climate change planning. Its selection as an MIT Climate Grand Challenges flagship project will inject the project with more funding and resources, momentum that will also help BRAC’s fundraising. The team plans to deploy CREWSnet to southwestern Bangladesh within five years.

    “The communities that we are aspiring to reach with CREWSnet are deeply aware that their lives are changing — they have been looking climate change in the eye for many years. They are incredibly resilient, creative, and talented,” says Ashley Toombs, the external affairs director for BRAC USA. “As a team, we are excited to bring this system to Bangladesh. And what we learn together, we will apply at potentially even larger scales.” More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More

  • in

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    Note: This is the third article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    The industrial sector is the backbone of today’s global economy, yet its activities are among the most energy-intensive and the toughest to decarbonize. Efforts to reach net-zero targets and avert runaway climate change will not succeed without new solutions for replacing sources of carbon emissions with low-carbon alternatives and developing scalable nonemitting applications of hydrocarbons.

    In conversations prepared for MIT News, faculty from three of the teams with projects in the competition’s “Decarbonizing complex industries and processes” category discuss strategies for achieving impact in hard-to-abate sectors, from long-distance transportation and building construction to textile manufacturing and chemical refining. The other Climate Grand Challenges research themes include using data and science to forecast climate-related risk, building equity and fairness into climate solutions, and removing, managing, and storing greenhouse gases. The following responses have been edited for length and clarity.

    Moving toward an all-carbon material approach to building

    Faced with the prospect of building stock doubling globally by 2050, there is a great need for sustainable alternatives to conventional mineral- and metal-based construction materials. Mark Goulthorpe, associate professor in the Department of Architecture, explains the methods behind Carbon >Building, an initiative to develop energy-efficient building materials by reorienting hydrocarbons from current use as fuels to environmentally benign products, creating an entirely new genre of lightweight, all-carbon buildings that could actually drive decarbonization.

    Q: What are all-carbon buildings and how can they help mitigate climate change?

    A: Instead of burning hydrocarbons as fuel, which releases carbon dioxide and other greenhouse gases that contribute to atmospheric pollution, we seek to pioneer a process that uses carbon materially to build at macro scale. New forms of carbon — carbon nanotube, carbon foam, etc. — offer salient properties for building that might effectively displace the current material paradigm. Only hydrocarbons offer sufficient scale to beat out the billion-ton mineral and metal markets, and their perilous impact. Carbon nanotube from methane pyrolysis is of special interest, as it offers hydrogen as a byproduct.

    Q: How will society benefit from the widespread use of all-carbon buildings?

    A: We anticipate reducing costs and timelines in carbon composite buildings, while increasing quality, longevity, and performance, and diminishing environmental impact. Affordability of buildings is a growing problem in all global markets as the cost of labor and logistics in multimaterial assemblies creates a burden that is very detrimental to economic growth and results in overcrowding and urban blight.

    Alleviating these challenges would have huge societal benefits, especially for those in lower income brackets who cannot afford housing, but the biggest benefit would be in drastically reducing the environmental footprint of typical buildings, which account for nearly 40 percent of global energy consumption.

    An all-carbon building sector will not only reduce hydrocarbon extraction, but can produce higher value materials for building. We are looking to rethink the building industry by greatly streamlining global production and learning from the low-labor methods pioneered by composite manufacturing such as wind turbine blades, which are quick and cheap to produce. This technology can improve the sustainability and affordability of buildings — and holds the promise of faster, cheaper, greener, and more resilient modes of dwelling.

    Emissions reduction through innovation in the textile industry

    Collectively, the textile industry is responsible for over 4 billion metric tons of carbon dioxide equivalent per year, or 5 to 10 percent of global greenhouse gas emissions — more than aviation and maritime shipping combined. And the problem is only getting worse with the industry’s rapid growth. Under the current trajectory, consumption is projected to increase 30 percent by 2030, reaching 102 million tons. A diverse group of faculty and researchers led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Yuly Fuentes-Medel, project manager for fiber technologies and research advisor to the MIT Innovation Initiative, is developing groundbreaking innovations to reshape how textiles are selected, sourced, designed, manufactured, and used, and to create the structural changes required for sustained reductions in emissions by this industry.

    Q: Why has the textile industry been difficult to decarbonize?

    A: The industry currently operates under a linear model that relies heavily on virgin feedstock, at roughly 97 percent, yet recycles or downcycles less than 15 percent. Furthermore, recent trends in “fast fashion” have led to massive underutilization of apparel, such that products are discarded on average after only seven to 10 uses. In an industry with high volume and low margins, replacement technologies must achieve emissions reduction at scale while maintaining performance and economic efficiency.

    There are also technical barriers to adopting circular business models, from the challenge of dealing with products comprising fiber blends and chemical additives to the low maturity of recycling technologies. The environmental impacts of textiles and apparel have been estimated using life cycle analysis, and industry-standard indexes are under development to assess sustainability throughout the life cycle of a product, but information and tools are needed to model how new solutions will alter those impacts and include the consumer as an active player to keep our planet safe. This project seeks to deliver both the new solutions and the tools to evaluate their potential for impact.

    Q: Describe the five components of your program. What is the anticipated timeline for implementing these solutions?

    A: Our plan comprises five programmatic sections, which include (1) enabling a paradigm shift to sustainable materials using nontraditional, carbon-negative polymers derived from biomass and additives that facilitate recycling; (2) rethinking manufacturing with processes to structure fibers and fabrics for performance, waste reduction, and increased material efficiency; (3) designing textiles for value by developing products that are customized, adaptable, and multifunctional, and that interact with their environment to reduce energy consumption; (4) exploring consumer behavior change through human interventions that reduce emissions by encouraging the adoption of new technologies, increased utilization of products, and circularity; and (5) establishing carbon transparency with systems-level analyses that measure the impact of these strategies and guide decision making.

    We have proposed a five-year timeline with annual targets for each project. Conservatively, we estimate our program could reduce greenhouse gas emissions in the industry by 25 percent by 2030, with further significant reductions to follow.

    Tough-to-decarbonize transportation

    Airplanes, transoceanic ships, and freight trucks are critical to transporting people and delivering goods, and the cornerstone of global commerce, manufacturing, and tourism. But these vehicles also emit 3.7 billion tons of carbon dioxide annually and, left unchecked, they could take up a quarter of the remaining carbon budget by 2050. William Green, the Hoyt C. Hottel Professor in the Department Chemical Engineering, co-leads a multidisciplinary team with Steven Barrett, professor of aeronautics and astronautics and director of the MIT Laboratory for Aviation and the Environment, that is working to identify and advance economically viable technologies and policies for decarbonizing heavy duty trucking, shipping, and aviation. The Tough to Decarbonize Transportation research program aims to design and optimize fuel chemistry and production, vehicles, operations, and policies to chart the course to net-zero emissions by midcentury.

    Q: What are the highest priority focus areas of your research program?

    A: Hydrocarbon fuels made from biomass are the least expensive option, but it seems impractical, and probably damaging to the environment, to harvest the huge amount of biomass that would be needed to meet the massive and growing energy demands from these sectors using today’s biomass-to-fuel technology. We are exploring strategies to increase the amount of useful fuel made per ton of biomass harvested, other methods to make low-climate-impact hydrocarbon fuels, such as from carbon dioxide, and ways to make fuels that do not contain carbon at all, such as with hydrogen, ammonia, and other hydrogen carriers.

    These latter zero-carbon options free us from the need for biomass or to capture gigatons of carbon dioxide, so they could be a very good long-term solution, but they would require changing the vehicles significantly, and the construction of new refueling infrastructure, with high capital costs.

    Q: What are the scientific, technological, and regulatory barriers to scaling and implementing potential solutions?

    A: Reimagining an aviation, trucking, and shipping sector that connects the world and increases equity without creating more environmental damage is challenging because these vehicles must operate disconnected from the electrical grid and have energy requirements that cannot be met by batteries alone. Some of the concepts do not even exist in prototype yet, and none of the appealing options have been implemented at anywhere near the scale required.

    In most cases, we do not know the best way to make the fuel, and for new fuels the vehicles and refueling systems all need to be developed. Also, new fuels, or large-scale use of biomass, will introduce new environmental problems that need to be carefully considered, to ensure that decarbonization solutions do not introduce big new problems.

    Perhaps most difficult are the policy, economic, and equity issues. A new long-haul transportation system will be expensive, and everyone will be affected by the increased cost of shipping freight. To have the desired climate impact, the transport system must change in almost every country. During the transition period, we will need both the existing vehicle and fuel system to keep running smoothly, even as a new low-greenhouse system is introduced. We will also examine what policies could make that work and how we can get countries around the world to agree to implement them. More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More