More stories

  • in

    3 Questions: Boosting concrete’s ability to serve as a natural “carbon sink”

    Damian Stefaniuk is a postdoc at the MIT Concrete Sustainability Hub (CSHub). He works with MIT professors Franz-Josef Ulm and Admir Masic of the MIT Department of Civil and Environmental Engineering (CEE) to investigate multifunctional concrete. Here, he provides an overview of carbonation in cement-based products, a brief explanation of why understanding carbonation in the life cycle of cement products is key for assessing their environmental impact, and an update on current research to bolster the process.

    Q: What is carbonation and why is it important for thinking about concrete from a life-cycle perspective?

    A: Carbonation is the reaction between carbon dioxide (CO2) and certain compounds in cement-based products, occurring during their use phase and end of life. It forms calcium carbonate (CaCO3) and has important implications for neutralizing the GHG [greenhouse gas] emissions and achieving carbon neutrality in the life cycle of concrete.

    Firstly, carbonation causes cement-based products to act as natural carbon sinks, sequestering CO2 from the air and storing it permanently. This helps mitigate the carbon emissions associated with the production of cement, reducing their overall carbon footprint.

    Secondly, carbonation affects concrete properties. Early-stage carbonation may increase the compressive strength of cement-based products, enhancing their durability and structural performance. However, late-stage carbonation can impact corrosion resistance in steel-reinforced concrete due to reduced alkalinity.

    Considering carbonation in the life cycle of cement-based products is crucial for accurately assessing their environmental impact. Understanding and leveraging carbonation can help industry reduce carbon emissions and maximize carbon sequestration potential. Paying close attention to it in the design process aids in creating durable and corrosion-resistant structures, contributing to longevity and overall sustainability.

    Q: What are some ongoing global efforts to force carbonation?

    A: Some ongoing efforts to force carbonation in concrete involve artificially increasing the amount of CO2 gas present during the early-stage hydration of concrete. This process, known as forced carbonation, aims to accelerate the carbonation reaction and its associated benefits.

    Forced carbonation is typically applied to precast concrete elements that are produced in artificially CO2-rich environments. By exposing fresh concrete to higher concentrations of CO2 during curing, the carbonation process can be expedited, resulting in potential improvements in strength, reduced water absorption, improved resistance to chloride permeability, and improved performance during freeze-thaw. At the same time, it can be difficult to quantify how much CO2 is absorbed and released because of the process.

    These efforts to induce early-stage carbonation through forced carbonation represent the industry’s focus on optimizing concrete performance and environmental impacts. By exploring methods to enhance the carbonation process, researchers and practitioners seek to more efficiently harness its benefits, such as increasing strength and sequestering CO2.

    It is important to note that forced carbonation requires careful implementation and monitoring to ensure desired outcomes. The specific procedures and conditions vary based on the application and intended goals, highlighting the need for expertise and controlled environments.

    Overall, ongoing efforts in forced carbonation contribute to the continuous development of concrete technology, aiming to improve its properties and reduce its carbon footprint throughout the life cycle of the material.

    Q: What is chemically-induced pre-cure carbonation, and what implications does it have?

    A: Chemically-induced pre-cure carbonation (CIPCC) is a method developed by the MIT CSHub to mineralize and permanently store CO2 in cement. Unlike traditional forced carbonation methods, CIPCC introduces CO2 into the concrete mix as a solid powder, specifically sodium bicarbonate. This approach addresses some of the limitations of current carbon capture and utilization technologies.

    The implications of CIPCC are significant. Firstly, it offers convenience for cast-in-place applications, making it easier to incorporate CO2 use in concrete projects. Unlike some other approaches, CIPCC allows for precise control over the quantity of CO2 sequestered in the concrete. This ensures accurate carbonation and facilitates better management of the storage process. CIPCC also builds on previous research regarding amorphous hydration phases, providing an additional mechanism for CO2 sequestration in cement-based products. These phases carbonate through CIPCC, contributing to the overall carbon sequestration capacity of the material.

    Furthermore, early-stage pre-cure carbonation shows promise as a pathway for concrete to permanently sequester a controlled and precise quantity of CO2. Our recent paper in PNAS Nexus suggests that it could theoretically offset at least 40 percent of the calcination emissions associated with cement production, when anticipating advances in the lower-emissions production of sodium bicarbonate. We also found that up to 15 percent of cement (by weight) could be substituted with sodium bicarbonate without compromising the mechanical performance of a given mix. Further research is needed to evaluate long-term effects of this process to explore the potential life-cycle savings and impacts of carbonation.

    CIPCC offers not only environmental benefits by reducing carbon emissions, but also practical advantages. The early-stage strength increase observed in real-world applications could expedite construction timelines by allowing concrete to reach its full strength faster.

    Overall, CIPCC demonstrates the potential for more efficient and controlled CO2 sequestration in concrete. It represents an important development in concrete sustainability, emphasizing the need for further research and considering the material’s life-cycle impacts.

    This research was carried out by MIT CSHub, which is sponsored by the Concrete Advancement Foundation and the Portland Cement Association. More

  • in

    MIT engineers create an energy-storing supercapacitor from ancient materials

    Two of humanity’s most ubiquitous historical materials, cement and carbon black (which resembles very fine charcoal), may form the basis for a novel, low-cost energy storage system, according to a new study. The technology could facilitate the use of renewable energy sources such as solar, wind, and tidal power by allowing energy networks to remain stable despite fluctuations in renewable energy supply.

    The two materials, the researchers found, can be combined with water to make a supercapacitor — an alternative to batteries — that could provide storage of electrical energy. As an example, the MIT researchers who developed the system say that their supercapacitor could eventually be incorporated into the concrete foundation of a house, where it could store a full day’s worth of energy while adding little (or no) to the cost of the foundation and still providing the needed structural strength. The researchers also envision a concrete roadway that could provide contactless recharging for electric cars as they travel over that road.

    The simple but innovative technology is described this week in the journal PNAS, in a paper by MIT professors Franz-Josef Ulm, Admir Masic, and Yang-Shao Horn, and four others at MIT and at the Wyss Institute for Biologically Inspired Engineering.

    Capacitors are in principle very simple devices, consisting of two electrically conductive plates immersed in an electrolyte and separated by a membrane. When a voltage is applied across the capacitor, positively charged ions from the electrolyte accumulate on the negatively charged plate, while the positively charged plate accumulates negatively charged ions. Since the membrane in between the plates blocks charged ions from migrating across, this separation of charges creates an electric field between the plates, and the capacitor becomes charged. The two plates can maintain this pair of charges for a long time and then deliver them very quickly when needed. Supercapacitors are simply capacitors that can store exceptionally large charges.

    The amount of power a capacitor can store depends on the total surface area of its conductive plates. The key to the new supercapacitors developed by this team comes from a method of producing a cement-based material with an extremely high internal surface area due to a dense, interconnected network of conductive material within its bulk volume. The researchers achieved this by introducing carbon black — which is highly conductive — into a concrete mixture along with cement powder and water, and letting it cure. The water naturally forms a branching network of openings within the structure as it reacts with cement, and the carbon migrates into these spaces to make wire-like structures within the hardened cement. These structures have a fractal-like structure, with larger branches sprouting smaller branches, and those sprouting even smaller branchlets, and so on, ending up with an extremely large surface area within the confines of a relatively small volume. The material is then soaked in a standard electrolyte material, such as potassium chloride, a kind of salt, which provides the charged particles that accumulate on the carbon structures. Two electrodes made of this material, separated by a thin space or an insulating layer, form a very powerful supercapacitor, the researchers found.

    The two plates of the capacitor function just like the two poles of a rechargeable battery of equivalent voltage: When connected to a source of electricity, as with a battery, energy gets stored in the plates, and then when connected to a load, the electrical current flows back out to provide power.

    “The material is fascinating,” Masic says, “because you have the most-used manmade material in the world, cement, that is combined with carbon black, that is a well-known historical material — the Dead Sea Scrolls were written with it. You have these at least two-millennia-old materials that when you combine them in a specific manner you come up with a conductive nanocomposite, and that’s when things get really interesting.”

    As the mixture sets and cures, he says, “The water is systematically consumed through cement hydration reactions, and this hydration fundamentally affects nanoparticles of carbon because they are hydrophobic (water repelling).” As the mixture evolves, “the carbon black is self-assembling into a connected conductive wire,” he says. The process is easily reproducible, with materials that are inexpensive and readily available anywhere in the world. And the amount of carbon needed is very small — as little as 3 percent by volume of the mix — to achieve a percolated carbon network, Masic says.

    Supercapacitors made of this material have great potential to aid in the world’s transition to renewable energy, Ulm says. The principal sources of emissions-free energy, wind, solar, and tidal power, all produce their output at variable times that often do not correspond to the peaks in electricity usage, so ways of storing that power are essential. “There is a huge need for big energy storage,” he says, and existing batteries are too expensive and mostly rely on materials such as lithium, whose supply is limited, so cheaper alternatives are badly needed. “That’s where our technology is extremely promising, because cement is ubiquitous,” Ulm says.

    The team calculated that a block of nanocarbon-black-doped concrete that is 45 cubic meters (or yards) in size — equivalent to a cube about 3.5 meters across — would have enough capacity to store about 10 kilowatt-hours of energy, which is considered the average daily electricity usage for a household. Since the concrete would retain its strength, a house with a foundation made of this material could store a day’s worth of energy produced by solar panels or windmills and allow it to be used whenever it’s needed. And, supercapacitors can be charged and discharged much more rapidly than batteries.

    After a series of tests used to determine the most effective ratios of cement, carbon black, and water, the team demonstrated the process by making small supercapacitors, about the size of some button-cell batteries, about 1 centimeter across and 1 millimeter thick, that could each be charged to 1 volt, comparable to a 1-volt battery. They then connected three of these to demonstrate their ability to light up a 3-volt light-emitting diode (LED). Having proved the principle, they now plan to build a series of larger versions, starting with ones about the size of a typical 12-volt car battery, then working up to a 45-cubic-meter version to demonstrate its ability to store a house-worth of power.

    There is a tradeoff between the storage capacity of the material and its structural strength, they found. By adding more carbon black, the resulting supercapacitor can store more energy, but the concrete is slightly weaker, and this could be useful for applications where the concrete is not playing a structural role or where the full strength-potential of concrete is not required. For applications such as a foundation, or structural elements of the base of a wind turbine, the “sweet spot” is around 10 percent carbon black in the mix, they found.

    Another potential application for carbon-cement supercapacitors is for building concrete roadways that could store energy produced by solar panels alongside the road and then deliver that energy to electric vehicles traveling along the road using the same kind of technology used for wirelessly rechargeable phones. A related type of car-recharging system is already being developed by companies in Germany and the Netherlands, but using standard batteries for storage.

    Initial uses of the technology might be for isolated homes or buildings or shelters far from grid power, which could be powered by solar panels attached to the cement supercapacitors, the researchers say.

    Ulm says that the system is very scalable, as the energy-storage capacity is a direct function of the volume of the electrodes. “You can go from 1-millimeter-thick electrodes to 1-meter-thick electrodes, and by doing so basically you can scale the energy storage capacity from lighting an LED for a few seconds, to powering a whole house,” he says.

    Depending on the properties desired for a given application, the system could be tuned by adjusting the mixture. For a vehicle-charging road, very fast charging and discharging rates would be needed, while for powering a home “you have the whole day to charge it up,” so slower-charging material could be used, Ulm says.

    “So, it’s really a multifunctional material,” he adds. Besides its ability to store energy in the form of supercapacitors, the same kind of concrete mixture can be used as a heating system, by simply applying electricity to the carbon-laced concrete.

    Ulm sees this as “a new way of looking toward the future of concrete as part of the energy transition.”

    The research team also included postdocs Nicolas Chanut and Damian Stefaniuk at MIT’s Department of Civil and Environmental Engineering, James Weaver at the Wyss Institute, and Yunguang Zhu in MIT’s Department of Mechanical Engineering. The work was supported by the MIT Concrete Sustainability Hub, with sponsorship by the Concrete Advancement Foundation. More

  • in

    3 Questions: Leveraging carbon uptake to lower concrete’s carbon footprint

    To secure a more sustainable and resilient future, we must take a careful look at the life cycle impacts of humanity’s most-produced building material: concrete. Carbon uptake, the process by which cement-based products sequester carbon dioxide, is key to this understanding.

    Hessam AzariJafari, the MIT Concrete Sustainability Hub’s deputy director, is deeply invested in the study of this process and its acceleration, where prudent. Here, he describes how carbon uptake is a key lever to reach a carbon-neutral concrete industry.

    Q: What is carbon uptake in cement-based products and how can it influence their properties?

    A: Carbon uptake, or carbonation, is a natural process of permanently sequestering CO2 from the atmosphere by hardened cement-based products like concretes and mortars. Through this reaction, these products form different kinds of limes or calcium carbonates. This uptake occurs slowly but significantly during two phases of the life cycle of cement-based products: the use phase and the end-of-life phase.

    In general, carbon uptake increases the compressive strength of cement-based products as it can densify the paste. At the same time, carbon uptake can impact the corrosion resistance of concrete. In concrete that is reinforced with steel, the corrosion process can be initiated if the carbonation happens extensively (e.g., the whole of the concrete cover is carbonated) and intensively (e.g., a significant proportion of the hardened cement product is carbonated). [Concrete cover is the layer distance between the surface of reinforcement and the outer surface of the concrete.]

    Q: What are the factors that influence carbon uptake?

    A: The intensity of carbon uptake depends on four major factors: the climate, the types and properties of cement-based products used, the composition of binders (cement type) used, and the geometry and exposure condition of the structure.

    In regard to climate, the humidity and temperature affect the carbon uptake rate. In very low or very high humidity conditions, the carbon uptake process is slowed. High temperatures speed the process. The local atmosphere’s carbon dioxide concentration can affect the carbon uptake rate. For example, in urban areas, carbon uptake is an order of magnitude faster than in suburban areas.

    The types and properties of cement-based products have a large influence on the rate of carbon uptake. For example, mortar (consisting of water, cement, and fine aggregates) carbonates two to four times faster than concrete (consisting of water, cement, and coarse and fine aggregates) because of its more porous structure.The carbon uptake rate of dry-cast concrete masonry units is higher than wet-cast for the same reason. In structural concrete, the process is made slower as mechanical properties are improved and the density of the hardened products’ structure increases.

    Lastly, a structure’s surface area-to-volume ratio and exposure to air and water can have ramifications for its rate of carbonation. When cement-based products are covered, carbonation may be slowed or stopped. Concrete that is exposed to fresh air while being sheltered from rain can have a larger carbon uptake compared to cement-based products that are painted or carpeted. Additionally, cement-based elements with large surface areas, like thin concrete structures or mortar layers, allow uptake to progress more extensively.

    Q: What is the role of carbon uptake in the carbon neutrality of concrete, and how should architects and engineers account for it when designing for specific applications?

    A: Carbon uptake is a part of the life cycle of any cement-based products that should be accounted for in carbon footprint calculations. Our evaluation shows the U.S. pavement network can sequester 5.8 million metric tons of CO2, of which 52 percent will be sequestered when the demolished concrete is stockpiled at its end of life.

    From one concrete structure to another, the percentage of emissions sequestered may vary. For instance, concrete bridges tend to have a lower percentage versus buildings constructed with concrete masonry. In any case, carbon uptake can influence the life cycle environmental performance of concrete.

    At the MIT Concrete Sustainability Hub, we have developed a calculator to enable construction stakeholders to estimate the carbon uptake of concrete structures during their use and end-of-life phases.

    Looking toward the future, carbon uptake’s role in the carbon neutralization of cement-based products could grow in importance. While caution should be taken in regards to uptake when reinforcing steel is embedded in concrete, there are opportunities for different stakeholders to augment carbon uptake in different cement-based products.

    Architects can influence the shape of concrete elements to increase the surface area-to-volume ratio (e.g., making “waffle” patterns on slabs and walls, or having several thin towers instead of fewer large ones on an apartment complex). Concrete manufacturers can adjust the binder type and quantity while delivering concrete that meets performance requirements. Finally, industrial ecologists and life-cycle assessment practitioners need to work on the tools and add-ons to make sure the impact of carbon is well captured when assessing the potential impacts of cement-based products in buildings and infrastructure systems.

    Currently, the cement and concrete industry is working with tech companies as well as local, state, and federal governments to lower and subsidize the code of carbon capture sequestration and neutralization. Accelerating carbon uptake where reasonable could be an additional lever to neutralize the carbon emissions of the concrete value chain.

    Carbon uptake is one more piece of the puzzle that makes concrete a sustainable choice for building in many applications. The sustainability and resilience of the future built environment lean on the use of concrete. There is still much work to be done to truly build sustainably, and understanding carbon uptake is an important place to begin. More

  • in

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Almost 2.8 million lane-miles, or about 4.6 million lane-kilometers, of the United States are paved.

    Roads and streets form the backbone of our built environment. They take us to work or school, take goods to their destinations, and much more.

    However, a new study by MIT Concrete Sustainability Hub (CSHub) researchers shows that the annual greenhouse gas (GHG) emissions of all construction materials used in the U.S. pavement network are 11.9 to 13.3 megatons. This is equivalent to the emissions of a gasoline-powered passenger vehicle driving about 30 billion miles in a year.

    As roads are built, repaved, and expanded, new approaches and thoughtful material choices are necessary to dampen their carbon footprint. 

    The CSHub researchers found that, by 2050, mixtures for pavements can be made carbon-neutral if industry and governmental actors help to apply a range of solutions — like carbon capture — to reduce, avoid, and neutralize embodied impacts. (A neutralization solution is any compensation mechanism in the value chain of a product that permanently removes the global warming impact of the processes after avoiding and reducing the emissions.) Furthermore, nearly half of pavement-related greenhouse gas (GHG) savings can be achieved in the short term with a negative or nearly net-zero cost.

    The research team, led by Hessam AzariJafari, MIT CSHub’s deputy director, closed gaps in our understanding of the impacts of pavements decisions by developing a dynamic model quantifying the embodied impact of future pavements materials demand for the U.S. road network. 

    The team first split the U.S. road network into 10-mile (about 16 kilometer) segments, forecasting the condition and performance of each. They then developed a pavement management system model to create benchmarks helping to understand the current level of emissions and the efficacy of different decarbonization strategies. 

    This model considered factors such as annual traffic volume and surface conditions, budget constraints, regional variation in pavement treatment choices, and pavement deterioration. The researchers also used a life-cycle assessment to calculate annual state-level emissions from acquiring pavement construction materials, considering future energy supply and materials procurement.

    The team considered three scenarios for the U.S. pavement network: A business-as-usual scenario in which technology remains static, a projected improvement scenario aligned with stated industry and national goals, and an ambitious improvement scenario that intensifies or accelerates projected strategies to achieve carbon neutrality. 

    If no steps are taken to decarbonize pavement mixtures, the team projected that GHG emissions of construction materials used in the U.S. pavement network would increase by 19.5 percent by 2050. Under the projected scenario, there was an estimated 38 percent embodied impact reduction for concrete and 14 percent embodied impact reduction for asphalt by 2050.

    The keys to making the pavement network carbon neutral by 2050 lie in multiple places. Fully renewable energy sources should be used for pavement materials production, transportation, and other processes. The federal government must contribute to the development of these low-carbon energy sources and carbon capture technologies, as it would be nearly impossible to achieve carbon neutrality for pavements without them. 

    Additionally, increasing pavements’ recycled content and improving their design and production efficiency can lower GHG emissions to an extent. Still, neutralization is needed to achieve carbon neutrality.

    Making the right pavement construction and repair choices would also contribute to the carbon neutrality of the network. For instance, concrete pavements can offer GHG savings across the whole life cycle as they are stiffer and stay smoother for longer, meaning they require less maintenance and have a lesser impact on the fuel efficiency of vehicles. 

    Concrete pavements have other use-phase benefits including a cooling effect through an intrinsically high albedo, meaning they reflect more sunlight than regular pavements. Therefore, they can help combat extreme heat and positively affect the earth’s energy balance through positive radiative forcing, making albedo a potential neutralization mechanism.

    At the same time, a mix of fixes, including using concrete and asphalt in different contexts and proportions, could produce significant GHG savings for the pavement network; decision-makers must consider scenarios on a case-by-case basis to identify optimal solutions. 

    In addition, it may appear as though the GHG emissions of materials used in local roads are dwarfed by the emissions of interstate highway materials. However, the study found that the two road types have a similar impact. In fact, all road types contribute heavily to the total GHG emissions of pavement materials in general. Therefore, stakeholders at the federal, state, and local levels must be involved if our roads are to become carbon neutral. 

    The path to pavement network carbon-neutrality is, therefore, somewhat of a winding road. It demands regionally specific policies and widespread investment to help implement decarbonization solutions, just as renewable energy initiatives have been supported. Providing subsidies and covering the costs of premiums, too, are vital to avoid shifts in the market that would derail environmental savings.

    When planning for these shifts, we must recall that pavements have impacts not just in their production, but across their entire life cycle. As pavements are used, maintained, and eventually decommissioned, they have significant impacts on the surrounding environment.

    If we are to meet climate goals such as the Paris Agreement, which demands that we reach carbon-neutrality by 2050 to avoid the worst impacts of climate change, we — as well as industry and governmental stakeholders — must come together to take a hard look at the roads we use every day and work to reduce their life cycle emissions. 

    The study was published in the International Journal of Life Cycle Assessment. In addition to AzariJafari, the authors include Fengdi Guo of the MIT Department of Civil and Environmental Engineering; Jeremy Gregory, executive director of the MIT Climate and Sustainability Consortium; and Randolph Kirchain, director of the MIT CSHub. More

  • in

    Q&A: Randolph Kirchain on how cool pavements can mitigate climate change

    As cities search for climate change solutions, many have turned to one burgeoning technology: cool pavements. By reflecting a greater proportion of solar radiation, cool pavements can offer an array of climate change mitigation benefits, from direct radiative forcing to reduced building energy demand.

    Yet, scientists from the MIT Concrete Sustainability Hub (CSHub) have found that cool pavements are not just a summertime solution. Here, Randolph Kirchain, a principal research scientist at CSHub, discusses how implementing cool pavements can offer myriad greenhouse gas reductions in cities — some of which occur even in the winter.

    Q: What exactly are cool pavements? 

    A: There are two ways to make a cool pavement: changing the pavement formulation to make the pavement porous like a sponge (a so-called “pervious pavement”), or paving with reflective materials. The latter method has been applied extensively because it can be easily adopted on the current road network with different traffic volumes while sustaining — and sometimes improving — the road longevity. To the average observer, surface reflectivity usually corresponds to the color of a pavement — the lighter, the more reflective. 

    We can quantify this surface reflectivity through a measurement called albedo, which refers to the percentage of light a surface reflects. Typically, a reflective pavement has an albedo of 0.3 or higher, meaning that it reflects 30 percent of the light it receives.

    To attain this reflectivity, there are a number of techniques at our disposal. The most common approach is to simply paint a brighter coating atop existing pavements. But it’s also possible to pave with materials that possess naturally greater reflectivity, such as concrete or lighter-colored binders and aggregates.

    Q: How can cool pavements mitigate climate change?

    A: Cool pavements generate several, often unexpected, effects. The most widely known is a reduction in surface and local air temperatures. This occurs because cool pavements absorb less radiation and, consequently, emit less of that radiation as heat. In the summer, this means they can lower urban air temperatures by several degrees Fahrenheit.

    By changing air temperatures or reflecting light into adjacent structures, cool pavements can also alter the need for heating and cooling in those structures, which can change their energy demand and, therefore, mitigate the climate change impacts associated with building energy demand.

    However, depending on how dense the neighborhood is built, a proportion of the radiation cool pavements reflect doesn’t strike buildings; instead, it travels back into the atmosphere and out into space. This process, called a radiative forcing, shifts the Earth’s energy balance and effectively offsets some of the radiation trapped by greenhouse gases (GHGs).

    Perhaps the least-known impact of cool pavements is on vehicle fuel consumption. Certain cool pavements, namely concrete, possess a combination of structural properties and longevity that can minimize the excess fuel consumption of vehicles caused by road quality. Over the lifetime of a pavement, these fuel savings can add up — often offsetting the higher initial footprint of paving with more durable materials.

    Q: With these impacts in mind, how do the effects of cool pavements vary seasonally and by location?

    A: Many view cool pavements as a solution to summer heat. But research has shown that they can offer climate change benefits throughout the year.

    In high-volume traffic roads, the most prominent climate change benefit of cool pavements is not their reflectivity but their impact on vehicle fuel consumption. As such, cool pavement alternatives that minimize fuel consumption can continue to cut GHG emissions in winter, assuming traffic is constant.

    Even in winter, pavement reflectivity still contributes greatly to the climate change mitigation benefits of cool pavements. We found that roughly a third of the annual CO2-equivalent emissions reductions from the radiative forcing effects of cool pavements occurred in the fall and winter.

    It’s important to note, too, that the direction — not just the magnitude — of cool pavement impacts also vary seasonally. The most prominent seasonal variation is the changes to building energy demand. As they lower air temperatures, cool pavements can lessen the demand for cooling in buildings in the summer, while, conversely, they can cause buildings to consume more energy and generate more emissions due to heating in the winter.

    Interestingly, the radiation reflected by cool pavements can also strike adjacent buildings, heating them up. In the summer, this can increase building energy demand significantly, yet in the winter it can also warm structures and reduce their need for heating. In that sense, cool pavements can warm — as well as cool — their surroundings, depending on the building insolation [solar exposure] systems and neighborhood density.

    Q: How can cities manage these many impacts?

    A: As you can imagine, such different and often competing impacts can complicate the implementation of cool pavements. In some contexts, for instance, a cool pavement might even generate more emissions over its life than a conventional pavement — despite lowering air temperatures.

    To ensure that the lowest-emitting pavement is selected, then, cities should use a life-cycle perspective that considers all potential impacts. When they do, research has shown that they can reap sizeable benefits. The city of Phoenix, for instance, could see its projected emissions fall by as much as 6 percent, while Boston would experience a reduction of up to 3 percent.

    These benefits don’t just demonstrate the potential of cool pavements: they also reflect the outsized impact of pavements on our built environment and, moreover, our climate. As cities move to fight climate change, they should know that one of their most extensive assets also presents an opportunity for greater sustainability.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More

  • in

    Making roadway spending more sustainable

    The share of federal spending on infrastructure has reached an all-time low, falling from 30 percent in 1960 to just 12 percent in 2018.

    While the nation’s ailing infrastructure will require more funding to reach its full potential, recent MIT research finds that more sustainable and higher performing roads are still possible even with today’s limited budgets.

    The research, conducted by a team of current and former MIT Concrete Sustainability Hub (MIT CSHub) scientists and published in Transportation Research D, finds that a set of innovative planning strategies could improve pavement network environmental and performance outcomes even if budgets don’t increase.

    The paper presents a novel budget allocation tool and pairs it with three innovative strategies for managing pavement networks: a mix of paving materials, a mix of short- and long-term paving actions, and a long evaluation period for those actions.

    This novel approach offers numerous benefits. When applied to a 30-year case study of the Iowa U.S. Route network, the MIT CSHub model and management strategies cut emissions by 20 percent while sustaining current levels of road quality. Achieving this with a conventional planning approach would require the state to spend 32 percent more than it does today. The key to its success is the consideration of a fundamental — but fraught — aspect of pavement asset management: uncertainty.

    Predicting unpredictability

    The average road must last many years and support the traffic of thousands — if not millions — of vehicles. Over that time, a lot can change. Material prices may fluctuate, budgets may tighten, and traffic levels may intensify. Climate (and climate change), too, can hasten unexpected repairs.

    Managing these uncertainties effectively means looking long into the future and anticipating possible changes.

    “Capturing the impacts of uncertainty is essential for making effective paving decisions,” explains Fengdi Guo, the paper’s lead author and a departing CSHub research assistant.

    “Yet, measuring and relating these uncertainties to outcomes is also computationally intensive and expensive. Consequently, many DOTs [departments of transportation] are forced to simplify their analysis to plan maintenance — often resulting in suboptimal spending and outcomes.”

    To give DOTs accessible tools to factor uncertainties into their planning, CSHub researchers have developed a streamlined planning approach. It offers greater specificity and is paired with several new pavement management strategies.

    The planning approach, known as Probabilistic Treatment Path Dependence (PTPD), is based on machine learning and was devised by Guo.

    “Our PTPD model is composed of four steps,” he explains. “These steps are, in order, pavement damage prediction; treatment cost prediction; budget allocation; and pavement network condition evaluation.”

    The model begins by investigating every segment in an entire pavement network and predicting future possibilities for pavement deterioration, cost, and traffic.

    “We [then] run thousands of simulations for each segment in the network to determine the likely cost and performance outcomes for each initial and subsequent sequence, or ‘path,’ of treatment actions,” says Guo. “The treatment paths with the best cost and performance outcomes are selected for each segment, and then across the network.”

    The PTPD model not only seeks to minimize costs to agencies but also to users — in this case, drivers. These user costs can come primarily in the form of excess fuel consumption due to poor road quality.

    “One improvement in our analysis is the incorporation of electric vehicle uptake into our cost and environmental impact predictions,” Randolph Kirchain, a principal research scientist at MIT CSHub and MIT Materials Research Laboratory (MRL) and one of the paper’s co-authors. “Since the vehicle fleet will change over the next several decades due to electric vehicle adoption, we made sure to consider how these changes might impact our predictions of excess energy consumption.”

    After developing the PTPD model, Guo wanted to see how the efficacy of various pavement management strategies might differ. To do this, he developed a sophisticated deterioration prediction model.

    A novel aspect of this deterioration model is its treatment of multiple deterioration metrics simultaneously. Using a multi-output neural network, a tool of artificial intelligence, the model can predict several forms of pavement deterioration simultaneously, thereby, accounting for their correlations among one another.

    The MIT team selected two key metrics to compare the effectiveness of various treatment paths: pavement quality and greenhouse gas emissions. These metrics were then calculated for all pavement segments in the Iowa network.

    Improvement through variation

     The MIT model can help DOTs make better decisions, but that decision-making is ultimately constrained by the potential options considered.

    Guo and his colleagues, therefore, sought to expand current decision-making paradigms by exploring a broad set of network management strategies and evaluating them with their PTPD approach. Based on that evaluation, the team discovered that networks had the best outcomes when the management strategy includes using a mix of paving materials, a variety of long- and short-term paving repair actions (treatments), and longer time periods on which to base paving decisions.

    They then compared this proposed approach with a baseline management approach that reflects current, widespread practices: the use of solely asphalt materials, short-term treatments, and a five-year period for evaluating the outcomes of paving actions.

    With these two approaches established, the team used them to plan 30 years of maintenance across the Iowa U.S. Route network. They then measured the subsequent road quality and emissions.

    Their case study found that the MIT approach offered substantial benefits. Pavement-related greenhouse gas emissions would fall by around 20 percent across the network over the whole period. Pavement performance improved as well. To achieve the same level of road quality as the MIT approach, the baseline approach would need a 32 percent greater budget.

    “It’s worth noting,” says Guo, “that since conventional practices employ less effective allocation tools, the difference between them and the CSHub approach should be even larger in practice.”

    Much of the improvement derived from the precision of the CSHub planning model. But the three treatment strategies also play a key role.

    “We’ve found that a mix of asphalt and concrete paving materials allows DOTs to not only find materials best-suited to certain projects, but also mitigates the risk of material price volatility over time,” says Kirchain.

    It’s a similar story with a mix of paving actions. Employing a mix of short- and long-term fixes gives DOTs the flexibility to choose the right action for the right project.

    The final strategy, a long-term evaluation period, enables DOTs to see the entire scope of their choices. If the ramifications of a decision are predicted over only five years, many long-term implications won’t be considered. Expanding the window for planning, then, can introduce beneficial, long-term options.

    It’s not surprising that paving decisions are daunting to make; their impacts on the environment, driver safety, and budget levels are long-lasting. But rather than simplify this fraught process, the CSHub method aims to reflect its complexity. The result is an approach that provides DOTs with the tools to do more with less.

    This research was supported through the MIT Concrete Sustainability Hub by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More

  • in

    Predicting building emissions across the US

    The United States is entering a building boom. Between 2017 and 2050, it will build the equivalent of New York City 20 times over. Yet, to meet climate targets, the nation must also significantly reduce the greenhouse gas (GHG) emissions of its buildings, which comprise 27 percent of the nation’s total emissions.

    A team of current and former MIT Concrete Sustainability Hub (CSHub) researchers is addressing these conflicting demands with the aim of giving policymakers the tools and information to act. They have detailed the results of their collaboration in a recent paper in the journal Applied Energy that projects emissions for all buildings across the United States under two GHG reduction scenarios.

    Their paper found that “embodied” emissions — those from materials production and construction — would represent around a quarter of emissions between 2016 and 2050 despite extensive construction.

    Further, many regions would have varying priorities for GHG reductions; some, like the West, would benefit most from reductions to embodied emissions, while others, like parts of the Midwest, would see the greatest payoff from interventions to emissions from energy consumption. If these regional priorities were addressed aggressively, building sector emissions could be reduced by around 30 percent between 2016 and 2050.

    Quantifying contradictions

    Modern buildings are far more complex — and efficient — than their predecessors. Due to new technologies and more stringent building codes, they can offer lower energy consumption and operational emissions. And yet, more-efficient materials and improved construction standards can also generate greater embodied emissions.

    Concrete, in many ways, epitomizes this tradeoff. Though its durability can minimize energy-intensive repairs over a building’s operational life, the scale of its production means that it contributes to a large proportion of the embodied impacts in the building sector.

    As such, the team centered GHG reductions for concrete in its analysis.

    “We took a bottom-up approach, developing reference designs based on a set of residential and commercial building models,” explains Ehsan Vahidi, an assistant professor at the University of Nevada at Reno and a former CSHub postdoc. “These designs were differentiated by roof and slab insulation, HVAC efficiency, and construction materials — chiefly concrete and wood.”

    After measuring the operational and embodied GHG emissions for each reference design, the team scaled up their results to the county level and then national level based on building stock forecasts. This allowed them to estimate the emissions of the entire building sector between 2016 and 2050.

    To understand how various interventions could cut GHG emissions, researchers ran two different scenarios — a “projected” and an “ambitious” scenario — through their framework.

    The projected scenario corresponded to current trends. It assumed grid decarbonization would follow Energy Information Administration predictions; the widespread adoption of new energy codes; efficiency improvement of lighting and appliances; and, for concrete, the implementation of 50 percent low-carbon cements and binders in all new concrete construction and the adoption of full carbon capture, storage, and utilization (CCUS) of all cement and concrete emissions.

    “Our ambitious scenario was intended to reflect a future where more aggressive actions are taken to reduce GHG emissions and achieve the targets,” says Vahidi. “Therefore, the ambitious scenario took these same strategies [of the projected scenario] but featured more aggressive targets for their implementation.”

    For instance, it assumed a 33 percent reduction in grid emissions by 2050 and moved the projected deadlines for lighting and appliances and thermal insulation forward by five and 10 years, respectively. Concrete decarbonization occurred far more quickly as well.

    Reductions and variations

    The extensive growth forecast for the U.S. building sector will inevitably generate a sizable number of emissions. But how much can this figure be minimized?

    Without the implementation of any GHG reduction strategies, the team found that the building sector would emit 62 gigatons CO2 equivalent between 2016 and 2050. That’s comparable to the emissions generated from 156 trillion passenger vehicle miles traveled.

    But both GHG reduction scenarios could cut the emissions from this unmitigated, business-as-usual scenario significantly.

    Under the projected scenario, emissions would fall to 45 gigatons CO2 equivalent — a 27 percent decrease over the analysis period. The ambitious scenario would offer a further 6 percent reduction over the projected scenario, reaching 40 gigatons CO2 equivalent — like removing around 55 trillion passenger vehicle miles from the road over the period.

    “In both scenarios, the largest contributor to reductions was the greening of the energy grid,” notes Vahidi. “Other notable opportunities for reductions were from increasing the efficiency of lighting, HVAC, and appliances. Combined, these four attributes contributed to 85 percent of the emissions over the analysis period. Improvements to them offered the greatest potential emissions reductions.”

    The remaining attributes, such as thermal insulation and low-carbon concrete, had a smaller impact on emissions and, consequently, offered smaller reduction opportunities. That’s because these two attributes were only applied to new construction in the analysis, which was outnumbered by existing structures throughout the period.

    The disparities in impact between strategies aimed at new and existing structures underscore a broader finding: Despite extensive construction over the period, embodied emissions would comprise just 23 percent of cumulative emissions between 2016 and 2050, with the remainder coming primarily from operation.  

    “This is a consequence of existing structures far outnumbering new structures,” explains Jasmina Burek, a CSHub postdoc and an incoming assistant professor at the University of Massachusetts Lowell. “The operational emissions generated by all new and existing structures between 2016 and 2050 will always greatly exceed the embodied emissions of new structures at any given time, even as buildings become more efficient and the grid gets greener.”

    Yet the emissions reductions from both scenarios were not distributed evenly across the entire country. The team identified several regional variations that could have implications for how policymakers must act to reduce building sector emissions.

    “We found that western regions in the United States would see the greatest reduction opportunities from interventions to residential emissions, which would constitute 90 percent of the region’s total emissions over the analysis period,” says Vahidi.

    The predominance of residential emissions stems from the region’s ongoing population surge and its subsequent growth in housing stock. Proposed solutions would include CCUS and low-carbon binders for concrete production, and improvements to energy codes aimed at residential buildings.

    As with the West, ideal solutions for the Southeast would include CCUS, low-carbon binders, and improved energy codes.

    “In the case of Southeastern regions, interventions should equally target commercial and residential buildings, which we found were split more evenly among the building stock,” explains Burek. “Due to the stringent energy codes in both regions, interventions to operational emissions were less impactful than those to embodied emissions.”

    Much of the Midwest saw the inverse outcome. Its energy mix remains one of the most carbon-intensive in the nation and improvements to energy efficiency and the grid would have a large payoff — particularly in Missouri, Kansas, and Colorado.

    New England and California would see the smallest reductions. As their already-strict energy codes would limit further operational reductions, opportunities to reduce embodied emissions would be the most impactful.

    This tremendous regional variation uncovered by the MIT team is in many ways a reflection of the great demographic and geographic diversity of the nation as a whole. And there are still further variables to consider.

    In addition to GHG emissions, future research could consider other environmental impacts, like water consumption and air quality. Other mitigation strategies to consider include longer building lifespans, retrofitting, rooftop solar, and recycling and reuse.

    In this sense, their findings represent the lower bounds of what is possible in the building sector. And even if further improvements are ultimately possible, they’ve shown that regional variation will invariably inform those environmental impact reductions.

    The MIT Concrete Sustainability Hub is a team of researchers from several departments across MIT working on concrete and infrastructure science, engineering, and economics. Its research is supported by the Portland Cement Association and the Ready Mixed Concrete Research and Education Foundation. More