More stories

  • in

    Addressing food insecurity in arid regions with an open-source evaporative cooling chamber design

    Anyone who has ever perspired on a hot summer day understands the principle — and critical value — of evaporative cooling. Our bodies produce droplets of sweat when we overheat, and with a dry breeze or nearby fan those droplets will evaporate, absorbing heat in the process creating a welcome cool feeling.

    That same scientific principle, known as evaporative cooling, can be a game-changer for preserving fruits and vegetables grown on smallholder farms, where the wilting dry heat can quickly degrade freshly harvested produce. If those just-picked red peppers and leafy greens are not consumed in short order, or quickly transferred to cold — or at least cool — storage, much of it can go to waste.

    Now, MIT Professor Leon Glicksman of the Building Technology Program within the Department of Architecture, and Research Engineer Eric Verploegen of MIT D-Lab have released their open-source design for a forced-air evaporative cooling chamber that can be built in a used shipping container and powered by either grid electricity or built-in solar panels. With a capacity of 168 produce crates, the chamber offers great promise for smallholder farmers in hot, dry climates who need an affordable method for quickly bringing down the temperature of freshly harvested fruit and vegetables to ensure they stay fresh.

    “Delicate fruits and vegetables are most vulnerable to spoilage if they are picked during the day,” says Verploegen, a longtime proponent of using evaporative cooling to reduce post-harvest waste. “And if refrigerated cold rooms aren’t feasible or affordable,” he continues, “evaporative cooling can make a big difference for farmers and the communities they feed.”

    Verploegen has made evaporative cooling the focus of his work since 2016, initially focusing on small-scale evaporative cooling “Zeer” pots, typically with a capacity between 10 and 100 liters and great for household use, as well as larger double-brick-walled chambers known as zero-energy cooling chambers or ZECCs, which can store between six and 16 vegetable crates at a time. These designs rely on passive airflow. The newly released design for the forced-air evaporative cooling chamber is differentiated from these two more modest designs by the active airflow system, as well as by significantly larger capacity.

    In 2019, Verploegen turned his attention to the idea of building a larger evaporative cooling room and joined forces with Glicksman to explore using forced, instead of passive, airflow to cool fruit and vegetables. After studying existing cold storage options and conducting user research with farmers in Kenya, they came up with the idea to use active evaporative cooling with a used shipping container as the structure of the chamber. As the Covid-19 pandemic was ramping up in 2020, they procured a used 10-foot shipping container, installed it in the courtyard area outside D-Lab near Village Street, and went to work on a prototype of the forced-air evaporative cooling chamber.

    Here’s how it works: Industrial fans draw hot, dry air into the chamber, which is passed through a porous wet pad. The resulting cool and humid air is then forced through the crates of fruits and vegetables stored inside the chamber. The air is then directed through the raised floor and to a channel between the insulation and the exterior container wall, where it flows to the exhaust holes near the top of the side walls.

    Leon Glicksman, a professor of building technology and mechanical engineering, drew on his previous research in natural ventilation and airflow in buildings to come up with the vertical forced-air design pattern for the chamber. “The key to the design is the close control of the airflow strength, and its direction,” he says. “The strength of the airflow passing directly through the crates of fruits and vegetables, and the airflow pathway itself, are what makes this system work so well. The design promotes rapid cooling of a harvest taken directly from the field.”

    In addition to the novel and effective airflow system, the forced-air evaporative cooling chamber represents so much of what D-Lab is known for in its work in low-resourced and off-grid communities: developing low-cost and low-carbon-footprint technologies with partners. Evaporative cooling is no different. Whether connected to the electrical grid or run from solar panels, the forced-air chamber consumes one-quarter the power of refrigerated cold rooms. And, as the chamber is designed to be built in a used shipping container — ubiquitous the world over — the project is a great example of up-cycling.

    Piloting the design

    As with earlier investigations, Verploegen, Glicksman, and their colleagues have worked closely with farmers and community members. For the forced-air system, the team engaged with community partners who are living the need for better cooling and storage conditions for their produce in the climate conditions where evaporative cooling works best. Two partners, one in Kenya and one in India, each built a pilot chamber, testing and informing the process alongside the work being done at MIT.

    In Kenya, where smallholder farms produce 63 percent of total food consumed and over 50 percent of smallholder produce is lost post-harvest, they worked with Solar Freeze, a cold storage company located in in Kibwezi, Kenya. Solar Freeze, whose founder Dysmus Kisilu was a 2019 MIT D-Lab Scale-Ups Fellow, built an off-grid forced-air evaporative cooling chamber at a produce market between Nairobi and Mombasa at a cost of $15,000, powered by solar photovoltaic panels. “The chamber is offering a safety net against huge post-harvest losses previously experienced by local smallholder farmers,” comments Peter Mumo, an entrepreneur and local politician who oversaw the construction of the Solar Freeze chamber in Makuni County, Kenya.

    As much as 30 percent of fruits and vegetables produced in India are wasted each year due to insufficient cold storage capacity, lack of cold storage close to farms, poor transportation infrastructure, and other gaps in the cold chain. Although the climate varies across the subcontinent, the hot desert climate there, such as in Bhuj where the Hunnarshala Foundation is headquartered, is perfect for evaporative cooling. Hunnarshala signed on to build an on-grid system for $8,100, which they located at an organic farm near Bhuj. “We have really encouraging results,” says Mahavir Acharya, executive director of Hunnarshala Foundation. “In peak summer, when the temperature is 42 [Celsius] we are able to get to 26 degrees [Celsius] inside and 95 percent humidity, which is really good conditions for vegetables to remain fresh for three, four, five, six days. In winter we tested [and saw temperatures reduced from] 35 degrees to 24 degrees [Celsius], and for seven days the quality was quite good.”

    Getting the word out

    With the concept validated and pilots well established, the next step is spreading the word.

    “We’re continuing to test and optimize the system, both in Kenya and India, as well as our test chambers here at MIT,” says Verploegen. “We will continue piloting with users and deploying with farmers and vendors, gathering data on the thermal performance, the shelf life of fruits and vegetables in the chamber, and how using the technology impacts the users. And, we’re also looking to engage with cold storage providers who might want to build this or others in the horticulture value chain such as farmer cooperatives, individual farmers, and local governments.”

    To reach the widest number of potential users, Verploegen and the team chose not to pursue a patent and instead set up a website to disseminate the open-source design with detailed guidance on how to build a forced-air evaporative cooling chamber. In addition to the extensive printed documentation, well-illustrated with detailed CAD drawings and video, the team has created instructional videos.

    As co-principal investigator in the early stages of the project, MIT professor of mechanical engineering Dan Frey contributed to the market research phase of the project and the initial conception of chamber design. “These forced-air evaporative cooling chambers have great potential, and the open-source approach is an excellent choice for this project,” says Frey. “The design’s release is a significant milestone on the path to positive impacts.”

    The forced-air evaporative cooling chamber research and design have been supported by the Abdul Latif Jameel Water and Food Systems Lab through an India Grant, Seed Grant, and a Solutions Grant. More

  • in

    Responsive design meets responsibility for the planet’s future

    MIT senior Sylas Horowitz kneeled at the edge of a marsh, tinkering with a blue-and-black robot about the size and shape of a shoe box and studded with lights and mini propellers.

    The robot was a remotely operated vehicle (ROV) — an underwater drone slated to collect water samples from beneath a sheet of Arctic ice. But its pump wasn’t working, and its intake line was clogged with sand and seaweed.

    “Of course, something must always go wrong,” Horowitz, a mechanical engineering major with minors in energy studies and environment and sustainability, later blogged about the Falmouth, Massachusetts, field test. By making some adjustments, Horowitz was able to get the drone functioning on site.

    Through a 2020 collaboration between MIT’s Department of Mechanical Engineering and the Woods Hole Oceanographic Institute (WHOI), Horowitz had been assembling and retrofitting the high-performance ROV to measure the greenhouse gases emitted by thawing permafrost.

    The Arctic’s permafrost holds an estimated 1,700 billion metric tons of methane and carbon dioxide — roughly 50 times the amount of carbon tied to fossil fuel emissions in 2019, according to climate research from NASA’s Jet Propulsion Laboratory. WHOI scientists wanted to understand the role the Arctic plays as a greenhouse gas source or sink.

    Horowitz’s ROV would be deployed from a small boat in sub-freezing temperatures to measure carbon dioxide and methane in the water. Meanwhile, a flying drone would sample the air.

    An MIT Student Sustainability Coalition leader and one of the first members of the MIT Environmental Solutions Initiative’s Rapid Response Group, Horowitz has focused on challenges related to clean energy, climate justice, and sustainable development.

    In addition to the ROV, Horowitz has tackled engineering projects through D-Lab, where community partners from around the world work with MIT students on practical approaches to alleviating global poverty. Horowitz worked on fashioning waste bins out of heat-fused recycled plastic for underserved communities in Liberia. Their thesis project, also initiated through D-Lab, is designing and building user-friendly, space- and fuel-efficient firewood cook stoves to improve the lives of women in Santa Catarina Palopó in northern Guatemala.

    Through the Tata-MIT GridEdge Solar Research program, they helped develop flexible, lightweight solar panels to mount on the roofs of street vendors’ e-rickshaws in Bihar, India.

    The thread that runs through Horowitz’s projects is user-centered design that creates a more equitable society. “In the transition to sustainable energy, we want our technology to adapt to the society that we live in,” they say. “Something I’ve learned from the D-Lab projects and also from the ROV project is that when you’re an engineer, you need to understand the societal and political implications of your work, because all of that should get factored into the design.”

    Horowitz describes their personal mission as creating systems and technology that “serve the well-being and longevity of communities and the ecosystems we exist within.

    “I want to relate mechanical engineering to sustainability and environmental justice,” they say. “Engineers need to think about how technology fits into the greater societal context of people in the environment. We want our technology to adapt to the society we live in and for people to be able, based on their needs, to interface with the technology.”

    Imagination and inspiration

    In Dix Hills, New York, a Long Island suburb, Horowitz’s dad is in banking and their mom is a speech therapist. The family hiked together, but Horowitz doesn’t tie their love for the natural world to any one experience. “I like to play in the dirt,” they say. “I’ve always had a connection to nature. It was a kind of childlike wonder.”

    Seeing footage of the massive 2010 oil spill in the Gulf of Mexico caused by an explosion on the Deepwater Horizon oil rig — which occurred when Horowitz was around 10 — was a jarring introduction to how human activity can impact the health of the planet.

    Their first interest was art — painting and drawing portraits, album covers, and more recently, digital images such as a figure watering a houseplant at a window while lightning flashes outside; a neon pink jellyfish in a deep blue sea; and, for an MIT-wide Covid quarantine project, two figures watching the sun set over a Green Line subway platform.

    Art dovetailed into a fascination with architecture, then shifted to engineering. In high school, Horowitz and a friend were co-captains of an all-girls robotics team. “It was just really wonderful, having this community and being able to build stuff,” they say. Horowitz and another friend on the team learned they were accepted to MIT on Pi Day 2018.

    Art, architecture, engineering — “it’s all kind of the same,” Horowitz says. “I like the creative aspect of design, being able to create things out of imagination.”

    Sustaining political awareness

    At MIT, Horowitz connected with a like-minded community of makers. They also launched themself into taking action against environmental injustice.

    In 2022, through the Student Sustainability Coalition (SSC), they encouraged MIT students to get involved in advocating for the Cambridge Green New Deal, legislation aimed at reducing emissions from new large commercial buildings such as those owned by MIT and creating a green jobs training program.

    In February 2022, Horowitz took part in a sit-in in Building 3 as part of MIT Divest, a student-led initiative urging the MIT administration to divest its endowment of fossil fuel companies.

    “I want to see MIT students more locally involved in politics around sustainability, not just the technology side,” Horowitz says. “I think there’s a lot of power from students coming together. They could be really influential.”

    User-oriented design

    The Arctic underwater ROV Horowitz worked on had to be waterproof and withstand water temperatures as low as 5 degrees Fahrenheit. It was tethered to a computer by a 150-meter-long cable that had to spool and unspool without tangling. The pump and tubing that collected water samples had to work without kinking.

    “It was cool, throughout the project, to think, ‘OK, what kind of needs will these scientists have when they’re out in these really harsh conditions in the Arctic? How can I make a machine that will make their field work easier?’

    “I really like being able to design things directly with the users, working within their design constraints,” they say.

    Inevitably, snafus occurred, but in photos and videos taken the day of the Falmouth field tests, Horowitz is smiling. “Here’s a fun unexpected (or maybe quite expected) occurrence!” they reported later. “The plastic mount for the shaft collar [used in the motor’s power transmission] ripped itself apart!” Undaunted, Horowitz jury-rigged a replacement out of sheet metal.

    Horowitz replaced broken wires in the winch-like device that spooled the cable. They added a filter at the intake to prevent sand and plants from clogging the pump.

    With a few more tweaks, the ROV was ready to descend into frigid waters. Last summer, it was successfully deployed on a field run in the Canadian high Arctic. A few months later, Horowitz was slated to attend OCEANS 2022 Hampton Roads, their first professional conference, to present a poster on their contribution to the WHOI permafrost research.

    Ultimately, Horowitz hopes to pursue a career in renewable energy, sustainable design, or sustainable agriculture, or perhaps graduate studies in data science or econometrics to quantify environmental justice issues such as the disproportionate exposure to pollution among certain populations and the effect of systemic changes designed to tackle these issues.

    After completing their degree this month, Horowitz will spend six months with MIT International Science and Technology Initiatives (MISTI), which fosters partnerships with industry leaders and host organizations around the world.

    Horowitz is thinking of working with a renewable energy company in Denmark, one of the countries they toured during a summer 2019 field trip led by the MIT Energy Initiative’s Director of Education Antje Danielson. They were particularly struck by Samsø, the world’s first carbon-neutral island, run entirely on renewable energy. “It inspired me to see what’s out there when I was a sophomore,” Horowitz says. They’re ready to see where inspiration takes them next.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Nonabah Lane, Navajo educator and environmental sustainability specialist with numerous ties to MIT, dies at 46

    Nonabah Lane, a Navajo educator and environmental sustainability specialist with numerous MIT ties to MIT, passed away in October. She was 46.

    Lane had recently been an MIT Media Lab Director’s Fellow; MIT Solve 2019 Indigenous Communities Fellow; Department of Urban Studies and Planning guest lecturer and community partner; community partner with the PKG Public Service Center, Terrascope, and D-Lab; and a speaker at this year’s MIT Energy Week.

    Lane was a passionate sustainability specialist with experience spearheading successful environmental civic science projects focused in agriculture, water science, and energy. Committed to mitigating water pollutants and environmental hazards in tribal communities, she held extensive knowledge of environmental policy and Indigenous water rights. 

    Lane’s clans were Ta’neezahnii (Tangled People), born for Tł’izíłání (Manygoats People), and her maternal grandfathers are the Kiiyaa’aanii (Towering House People), and paternal grandfathers are Bįįh Bitoo’nii (Deer Spring People).

    Lane was a member of the Navajo Nation, Nenahnezad Chapter. At Navajo Power, she worked as the lead developer for solar and energy storage projects to benefit tribal communities on the Navajo Nation and other tribal nations in New Mexico. Prior to joining Navajo Power, Lane co-founded Navajo Ethno-Agriculture, a farm that teaches Navajo culture through traditional farming and bilingual education. Lane also launched a campaign to partner with local Navajo schools and tribal colleges to create their own water-testing capabilities and translate data into information to local farmers.

    “I had the opportunity to collaborate closely with Nonabah on a range of initiatives she was championing on energy, food, justice, water, Indigenous leadership, youth STEM, and more. She was innovative, entrepreneurial, inclusive, heartfelt, and positively impacted MIT on every visit to campus. She articulated important things that needed saying and expanded people’s thinking constantly. We will all miss her insights and teamwork,” says Megan Smith ’86, SM ’88, MIT Corporation life member; third U.S. chief technology officer and assistant to the president in the Office of Science and Technology Policy; and founder and CEO of shift7.

    In March 2019, Lane and her family — parents Gloria and Harry and brother Bruce — welcomed students and staff of the MIT Terrascope first-year learning community to their farm, where they taught unique, hands-on lessons about traditional Diné farming and spirituality. She then continued to collaborate with Terrascope, helping staff and students develop community-based work with partners in Navajo Nation. 

    Terrascope associate director and lecturer Ari Epstein says, “Nonabah was an inspiring person and a remarkable collaborator; she had a talent for connecting and communicating across disciplinary, organizational, and cultural differences, and she was generous with her expertise and knowledge. We will miss her very much.”

    Lane came to MIT in May 2019 for the MIT Solve Indigenous Communities Fellowship and Solve at MIT event, representing Navajo Ethno-Agriculture with her mother, Gloria Lane, and brother, Bruce Lane, and later serving as a Fellow Leadership Group member. 

    “Nonabah was an incredible individual who worked tirelessly to better all of her communities, whether it was back home on the Navajo Nation, here at MIT Solve, or supporting her family and friends,” says Alex Amouyel, executive director of MIT Solve. “More than that, Nonabah was a passionate mentor and caring friend of so many, carefully tending the next generation of Indigenous innovators, entrepreneurs, and change-makers. Her loss will be felt deeply by the MIT community, and her legacy of heartfelt service will not be forgotten.”

    She continued to be heavily involved across the MIT campus — named as a 2019 Media Lab Director’s Fellow, leading a workshop at the 2020 MIT Media Lab Festival of Learning on modernizing Navajo foods using traditional food science and cultural narrative, speaking at the 2022 MIT Energy Conference “Accelerating the Clean Energy Transition,” and taking part in the MIT Center for Bits and Atoms (CBA) innovation weekly co-working groups for Covid-response related innovations. 

    “My CBA colleagues and I enjoyed working with Nonabah on rapid-prototyping for the Covid response, on expanding access to digital fabrication, and on ambitious proposals for connecting emerging technology with Indigenous knowledge,” says Professor Neil Gershenfeld, director, MIT Center for Bits and Atoms.

    Nonabah also guest lectured for the MIT Department of Urban Studies and Planning’s Indigenous Environmental Planning class in Spring 2022. Professors Lawrence Susskind and Gabriella Carolini and teaching assistant Dení López led the class in cooperation with Elizabeth Rule, Chickasaw Nation member and professor at American University. 

    Carolini shares, on behalf of Susskind and the class, “During this time, our teaching team and students from a broad range of fields at MIT had the deep honor of learning from and with the inimitable Nonabah Lane. Nonabah was a dedicated and critical partner to our class, representing in this instance Navajo Power — but of course, also so much more. Her broad experiences and knowledge — working with fellow Navajo members on energy and agriculture sovereignty, as well as in advancing entrepreneurship and innovation — reflected the urgency Nonabah saw in meeting the challenges and opportunities for sustainable and equitable futures in Navajo nation and beyond. She was a pure life force, running on all fires, and brought to our class a dedicated drive to educate, learn, and extend our reference points beyond current knowledge frontiers.” 

    Three MIT students — junior Isabella Gandara, Alexander Gerszten ’22, and Paul Picciano MS ’22 — who worked closely with Lane on a project with Navajo Power, recalled how she shared herself with them in so many ways, through her truly exceptional work ethic, stories about herself and her family, and the care and thought that she put into her ventures. They noted there was always something new to feel inspired by when in her presence. 

    “The PKG Public Service Center mourns the passing of Nonabah Lane. Navajo Ethno-Agriculture is a valued PKG Center partner that offers MIT undergraduate students the opportunity to support community-led projects with the Diné Community on Navajo Nation. Nonabah inspired students to examine broad social and technical issues that impact Indigenous communities in Navajo Nation and beyond, in many cases leaving an indelible mark on their personal and professional paths,” says Jill S. Bassett, associate dean and director of the PKG Public Service Center.

    Lane was a Sequoyah Fellow of the American Indian Science and Engineering Society (AISES) and remained actively engaged in the AISES community by mentoring young people interested in the fields of science, engineering, agriculture, and energy. Over the years, Lane collaborated with leaders across tribal lands and beyond on projects related to agriculture, energy, sustainable chemicals, and finance. Lane had an enormous positive impact on many through her accomplishments and also the countless meaningful connections she helped to form among people in diverse fields.

    Donations may be made to a memorial fund organized by Navajo Power, PBC in honor of Nonabah Lane, in support of Navajo Ethno-Agriculture, the Native American nonprofit she co-founded and cared deeply for. More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Design’s new frontier

    In the 1960s, the advent of computer-aided design (CAD) sparked a revolution in design. For his PhD thesis in 1963, MIT Professor Ivan Sutherland developed Sketchpad, a game-changing software program that enabled users to draw, move, and resize shapes on a computer. Over the course of the next few decades, CAD software reshaped how everything from consumer products to buildings and airplanes were designed.

    “CAD was part of the first wave in computing in design. The ability of researchers and practitioners to represent and model designs using computers was a major breakthrough and still is one of the biggest outcomes of design research, in my opinion,” says Maria Yang, Gail E. Kendall Professor and director of MIT’s Ideation Lab.

    Innovations in 3D printing during the 1980s and 1990s expanded CAD’s capabilities beyond traditional injection molding and casting methods, providing designers even more flexibility. Designers could sketch, ideate, and develop prototypes or models faster and more efficiently. Meanwhile, with the push of a button, software like that developed by Professor Emeritus David Gossard of MIT’s CAD Lab could solve equations simultaneously to produce a new geometry on the fly.

    In recent years, mechanical engineers have expanded the computing tools they use to ideate, design, and prototype. More sophisticated algorithms and the explosion of machine learning and artificial intelligence technologies have sparked a second revolution in design engineering.

    Researchers and faculty at MIT’s Department of Mechanical Engineering are utilizing these technologies to re-imagine how the products, systems, and infrastructures we use are designed. These researchers are at the forefront of the new frontier in design.

    Computational design

    Faez Ahmed wants to reinvent the wheel, or at least the bicycle wheel. He and his team at MIT’s Design Computation & Digital Engineering Lab (DeCoDE) use an artificial intelligence-driven design method that can generate entirely novel and improved designs for a range of products — including the traditional bicycle. They create advanced computational methods to blend human-driven design with simulation-based design.

    “The focus of our DeCoDE lab is computational design. We are looking at how we can create machine learning and AI algorithms to help us discover new designs that are optimized based on specific performance parameters,” says Ahmed, an assistant professor of mechanical engineering at MIT.

    For their work using AI-driven design for bicycles, Ahmed and his collaborator Professor Daniel Frey wanted to make it easier to design customizable bicycles, and by extension, encourage more people to use bicycles over transportation methods that emit greenhouse gases.

    To start, the group gathered a dataset of 4,500 bicycle designs. Using this massive dataset, they tested the limits of what machine learning could do. First, they developed algorithms to group bicycles that looked similar together and explore the design space. They then created machine learning models that could successfully predict what components are key in identifying a bicycle style, such as a road bike versus a mountain bike.

    Once the algorithms were good enough at identifying bicycle designs and parts, the team proposed novel machine learning tools that could use this data to create a unique and creative design for a bicycle based on certain performance parameters and rider dimensions.

    Ahmed used a generative adversarial network — or GAN — as the basis of this model. GAN models utilize neural networks that can create new designs based on vast amounts of data. However, using GAN models alone would result in homogeneous designs that lack novelty and can’t be assessed in terms of performance. To address these issues in design problems, Ahmed has developed a new method which he calls “PaDGAN,” performance augmented diverse GAN.

    “When we apply this type of model, what we see is that we can get large improvements in the diversity, quality, as well as novelty of the designs,” Ahmed explains.

    Using this approach, Ahmed’s team developed an open-source computational design tool for bicycles freely available on their lab website. They hope to further develop a set of generalizable tools that can be used across industries and products.

    Longer term, Ahmed has his sights set on loftier goals. He hopes the computational design tools he develops could lead to “design democratization,” putting more power in the hands of the end user.

    “With these algorithms, you can have more individualization where the algorithm assists a customer in understanding their needs and helps them create a product that satisfies their exact requirements,” he adds.

    Using algorithms to democratize the design process is a goal shared by Stefanie Mueller, an associate professor in electrical engineering and computer science and mechanical engineering.

    Personal fabrication

    Platforms like Instagram give users the freedom to instantly edit their photographs or videos using filters. In one click, users can alter the palette, tone, and brightness of their content by applying filters that range from bold colors to sepia-toned or black-and-white. Mueller, X-Window Consortium Career Development Professor, wants to bring this concept of the Instagram filter to the physical world.

    “We want to explore how digital capabilities can be applied to tangible objects. Our goal is to bring reprogrammable appearance to the physical world,” explains Mueller, director of the HCI Engineering Group based out of MIT’s Computer Science and Artificial Intelligence Laboratory.

    Mueller’s team utilizes a combination of smart materials, optics, and computation to advance personal fabrication technologies that would allow end users to alter the design and appearance of the products they own. They tested this concept in a project they dubbed “Photo-Chromeleon.”

    First, a mix of photochromic cyan, magenta, and yellow dies are airbrushed onto an object — in this instance, a 3D sculpture of a chameleon. Using software they developed, the team sketches the exact color pattern they want to achieve on the object itself. An ultraviolet light shines on the object to activate the dyes.

    To actually create the physical pattern on the object, Mueller has developed an optimization algorithm to use alongside a normal office projector outfitted with red, green, and blue LED lights. These lights shine on specific pixels on the object for a given period of time to physically change the makeup of the photochromic pigments.

    “This fancy algorithm tells us exactly how long we have to shine the red, green, and blue light on every single pixel of an object to get the exact pattern we’ve programmed in our software,” says Mueller.

    Giving this freedom to the end user enables limitless possibilities. Mueller’s team has applied this technology to iPhone cases, shoes, and even cars. In the case of shoes, Mueller envisions a shoebox embedded with UV and LED light projectors. Users could put their shoes in the box overnight and the next day have a pair of shoes in a completely new pattern.

    Mueller wants to expand her personal fabrication methods to the clothes we wear. Rather than utilize the light projection technique developed in the PhotoChromeleon project, her team is exploring the possibility of weaving LEDs directly into clothing fibers, allowing people to change their shirt’s appearance as they wear it. These personal fabrication technologies could completely alter consumer habits.

    “It’s very interesting for me to think about how these computational techniques will change product design on a high level,” adds Mueller. “In the future, a consumer could buy a blank iPhone case and update the design on a weekly or daily basis.”

    Computational fluid dynamics and participatory design

    Another team of mechanical engineers, including Sili Deng, the Brit (1961) & Alex (1949) d’Arbeloff Career Development Professor, are developing a different kind of design tool that could have a large impact on individuals in low- and middle-income countries across the world.

    As Deng walked down the hallway of Building 1 on MIT’s campus, a monitor playing a video caught her eye. The video featured work done by mechanical engineers and MIT D-Lab on developing cleaner burning briquettes for cookstoves in Uganda. Deng immediately knew she wanted to get involved.

    “As a combustion scientist, I’ve always wanted to work on such a tangible real-world problem, but the field of combustion tends to focus more heavily on the academic side of things,” explains Deng.

    After reaching out to colleagues in MIT D-Lab, Deng joined a collaborative effort to develop a new cookstove design tool for the 3 billion people across the world who burn solid fuels to cook and heat their homes. These stoves often emit soot and carbon monoxide, leading not only to millions of deaths each year, but also worsening the world’s greenhouse gas emission problem.

    The team is taking a three-pronged approach to developing this solution, using a combination of participatory design, physical modeling, and experimental validation to create a tool that will lead to the production of high-performing, low-cost energy products.

    Deng and her team in the Deng Energy and Nanotechnology Group use physics-based modeling for the combustion and emission process in cookstoves.

    “My team is focused on computational fluid dynamics. We use computational and numerical studies to understand the flow field where the fuel is burned and releases heat,” says Deng.

    These flow mechanics are crucial to understanding how to minimize heat loss and make cookstoves more efficient, as well as learning how dangerous pollutants are formed and released in the process.

    Using computational methods, Deng’s team performs three-dimensional simulations of the complex chemistry and transport coupling at play in the combustion and emission processes. They then use these simulations to build a combustion model for how fuel is burned and a pollution model that predicts carbon monoxide emissions.

    Deng’s models are used by a group led by Daniel Sweeney in MIT D-Lab to test the experimental validation in prototypes of stoves. Finally, Professor Maria Yang uses participatory design methods to integrate user feedback, ensuring the design tool can actually be used by people across the world.

    The end goal for this collaborative team is to not only provide local manufacturers with a prototype they could produce themselves, but to also provide them with a tool that can tweak the design based on local needs and available materials.

    Deng sees wide-ranging applications for the computational fluid dynamics her team is developing.

    “We see an opportunity to use physics-based modeling, augmented with a machine learning approach, to come up with chemical models for practical fuels that help us better understand combustion. Therefore, we can design new methods to minimize carbon emissions,” she adds.

    While Deng is utilizing simulations and machine learning at the molecular level to improve designs, others are taking a more macro approach.

    Designing intelligent systems

    When it comes to intelligent design, Navid Azizan thinks big. He hopes to help create future intelligent systems that are capable of making decisions autonomously by using the enormous amounts of data emerging from the physical world. From smart robots and autonomous vehicles to smart power grids and smart cities, Azizan focuses on the analysis, design, and control of intelligent systems.

    Achieving such massive feats takes a truly interdisciplinary approach that draws upon various fields such as machine learning, dynamical systems, control, optimization, statistics, and network science, among others.

    “Developing intelligent systems is a multifaceted problem, and it really requires a confluence of disciplines,” says Azizan, assistant professor of mechanical engineering with a dual appointment in MIT’s Institute for Data, Systems, and Society (IDSS). “To create such systems, we need to go beyond standard approaches to machine learning, such as those commonly used in computer vision, and devise algorithms that can enable safe, efficient, real-time decision-making for physical systems.”

    For robot control to work in the complex dynamic environments that arise in the real world, real-time adaptation is key. If, for example, an autonomous vehicle is going to drive in icy conditions or a drone is operating in windy conditions, they need to be able to adapt to their new environment quickly.

    To address this challenge, Azizan and his collaborators at MIT and Stanford University have developed a new algorithm that combines adaptive control, a powerful methodology from control theory, with meta learning, a new machine learning paradigm.

    “This ‘control-oriented’ learning approach outperforms the existing ‘regression-oriented’ methods, which are mostly focused on just fitting the data, by a wide margin,” says Azizan.

    Another critical aspect of deploying machine learning algorithms in physical systems that Azizan and his team hope to address is safety. Deep neural networks are a crucial part of autonomous systems. They are used for interpreting complex visual inputs and making data-driven predictions of future behavior in real time. However, Azizan urges caution.

    “These deep neural networks are only as good as their training data, and their predictions can often be untrustworthy in scenarios not covered by their training data,” he says. Making decisions based on such untrustworthy predictions could lead to fatal accidents in autonomous vehicles or other safety-critical systems.

    To avoid these potentially catastrophic events, Azizan proposes that it is imperative to equip neural networks with a measure of their uncertainty. When the uncertainty is high, they can then be switched to a “safe policy.”

    In pursuit of this goal, Azizan and his collaborators have developed a new algorithm known as SCOD — Sketching Curvature of Out-of-Distribution Detection. This framework could be embedded within any deep neural network to equip them with a measure of their uncertainty.

    “This algorithm is model-agnostic and can be applied to neural networks used in various kinds of autonomous systems, whether it’s drones, vehicles, or robots,” says Azizan.

    Azizan hopes to continue working on algorithms for even larger-scale systems. He and his team are designing efficient algorithms to better control supply and demand in smart energy grids. According to Azizan, even if we create the most efficient solar panels and batteries, we can never achieve a sustainable grid powered by renewable resources without the right control mechanisms.

    Mechanical engineers like Ahmed, Mueller, Deng, and Azizan serve as the key to realizing the next revolution of computing in design.

    “MechE is in a unique position at the intersection of the computational and physical worlds,” Azizan says. “Mechanical engineers build a bridge between theoretical, algorithmic tools and real, physical world applications.”

    Sophisticated computational tools, coupled with the ground truth mechanical engineers have in the physical world, could unlock limitless possibilities for design engineering, well beyond what could have been imagined in those early days of CAD. More

  • in

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the 2021 J-WAFS Solutions grant recipients. The J-WAFS Solutions program aims to propel MIT water- and food-related research toward commercialization. Grant recipients receive one year of financial support, as well as mentorship, networking, and guidance from industry experts, to begin their journey into the commercial world — whether that be in the form of bringing innovative products to market or launching cutting-edge startup companies. 

    This year, three projects will receive funding across water, food, and agriculture spaces. The winning projects will advance nascent technologies for off-grid refrigeration, portable water filtration, and dairy waste recycling. Each provides an efficient, accessible solution to the respective challenge being addressed.

    Since the start of the J-WAFS Solutions program in 2015, grants have provided instrumental support in creating a number of key MIT startups that focus on major water and food challenges. A 2015-16 grant helped the team behind Via Separations develop their business plan to massively decarbonize industrial separations processes. Other successful J-WAFS Solutions alumni include researchers who created a low-cost water filter made from tree branches and the team that launched the startup Xibus Systems, which is developing a handheld food safety sensor.

    “New technological advances are being made at MIT every day, and J-WAFS Solutions grants provide critical resources and support for these technologies to make it to market so that they can transform our local and global water and food systems,” says J-WAFS Executive Director Renee Robins. “This year’s grant recipients offer innovative tools that will provide more accessible food storage for smallholder farmers in places like Africa, safer drinking water, and a new approach to recycling food waste,” Robins notes. She adds, “J-WAFS is excited to work with these teams, and we look forward to seeing their impact on the water and food sectors.”

    The J-WAFS Solutions program is implemented in collaboration with Community Jameel, the global philanthropic organization founded by Mohammed Jameel ’78, and is supported by the MIT Venture Mentoring Service and the iCorps New England Regional Innovation Node at MIT.

    Mobile evaporative cooling rooms for vegetable preservation

    Food waste is a persistent problem across food systems supply chains, as 30-50 percent of food produced is lost before it reaches the table. The problem is compounded in areas without access to the refrigeration necessary to store food after it is harvested. Hot and dry climates in particular struggle to preserve food before it reaches consumers. A team led by Daniel Frey, faculty director for research at MIT D-Lab and professor of mechanical engineering, has pioneered a new approach to enable farmers to better preserve their produce and improve access to nutritious food in the community. The team includes Leon Glicksman, professor of building technology and mechanical engineering, and Eric Verploegen, a research engineer in MIT D-Lab.

    Instead of relying on traditional refrigeration with high energy and cost requirements, the team is utilizing forced-air evaporative cooling chambers. Their design, based on retrofitting shipping containers, will provide a lower-cost, better-performing solution enabling farmers to chill their produce without access to power. The research team was previously funded by J-WAFS through two different grants in 2019 to develop the off-grid technology in collaboration with researchers at the University of Nairobi and the Collectives for Integrated Livelihood Initiatives (CInI), Jamshedpur. Now, the cooling rooms are ready for pilot testing, which the MIT team will conduct with rural farmers in Kenya and India. The MIT team will deploy and test the storage chambers through collaborations with two Kenyan social enterprises and a nongovernmental organization in Gujarat, India. 

    Off-grid portable ion concentration polarization desalination unit

    Shrinking aquifers, polluted rivers, and increased drought are making fresh drinking water increasingly scarce, driving the need for improved desalination technologies. The water purifiers market, which was $45 billion in 2019, is expected to grow to $90.1 billion in 2025. However, current products on the market are limited in scope, in that they are designed to treat water that is already relatively low in salinity, and do not account for lead contamination or other technical challenges. A better solution is required to ensure access to clean and safe drinking water in the face of water shortages. 

    A team led by Jongyoon Han, professor of biological engineering and electrical engineering at MIT, has developed a portable desalination unit that utilizes an ion concentration polarization process. The compact and lightweight unit has the ability to remove dissolved and suspended solids from brackish water at a rate of one liter per hour, both in installed and remote field settings. The unit was featured in an award-winning video in the 2021 J-WAFS World Water Day Video Competition: MIT Research for a Water Secure Future. The team plans to develop the next-generation prototype of the desalination unit alongside a mass-production strategy and business model.

    Converting dairy industry waste into food and feed ingredients

    One of the trendiest foods in the last decade, Greek yogurt, has a hidden dark side: acid whey. This low-pH, liquid by-product of yogurt production has been a growing problem for producers, as untreated disposal of the whey can pose environmental risks due to its high organic content and acidic odor.

    With an estimated 3 million tons of acid whey generated in the United States each year, MIT researchers saw an opportunity to turn waste into a valuable resource for our food systems. Led by the Willard Henry Dow Professor in Chemical Engineering, Gregory Stephanopoulos, and Anthony J. Sinskey, professor of microbiology, the researchers are utilizing metabolic engineering to turn acid whey into carotenoids, the yellow and orange organic pigments found naturally in carrots, autumn leaves, and salmon. The team is hoping that these carotenoids can be utilized as food supplements or feed additives to make the most of what otherwise would have been wasted. More