More stories

  • in

    Tackling counterfeit seeds with “unclonable” labels

    Average crop yields in Africa are consistently far below those expected, and one significant reason is the prevalence of counterfeit seeds whose germination rates are far lower than those of the genuine ones. The World Bank estimates that as much as half of all seeds sold in some African countries are fake, which could help to account for crop production that is far below potential.

    There have been many attempts to prevent this counterfeiting through tracking labels, but none have proved effective; among other issues, such labels have been vulnerable to hacking because of the deterministic nature of their encoding systems. But now, a team of MIT researchers has come up with a kind of tiny, biodegradable tag that can be applied directly to the seeds themselves, and that provides a unique randomly created code that cannot be duplicated.

    The new system, which uses minuscule dots of silk-based material, each containing a unique combination of different chemical signatures, is described today in the journal Science Advances in a paper by MIT’s dean of engineering Anantha Chandrakasan, professor of civil and environmental engineering Benedetto Marelli, postdoc Hui Sun, and graduate student Saurav Maji.

    The problem of counterfeiting is an enormous one globally, the researchers point out, affecting everything from drugs to luxury goods, and many different systems have been developed to try to combat this. But there has been less attention to the problem in the area of agriculture, even though the consequences can be severe. In sub-Saharan Africa, for example, the World Bank estimates that counterfeit seeds are a significant factor in crop yields that average less than one-fifth of the potential for maize, and less than one-third for rice.

    Marelli explains that a key to the new system is creating a randomly-produced physical object whose exact composition is virtually impossible to duplicate. The labels they create “leverage randomness and uncertainty in the process of application, to generate unique signature features that can be read, and that cannot be replicated,” he says.

    What they’re dealing with, Sun adds, “is the very old job of trying, basically, not to get your stuff stolen. And you can try as much as you can, but eventually somebody is always smart enough to figure out how to do it, so nothing is really unbreakable. But the idea is, it’s almost impossible, if not impossible, to replicate it, or it takes so much effort that it’s not worth it anymore.”

    The idea of an “unclonable” code was originally developed as a way of protecting the authenticity of computer chips, explains Chandrakasan, who is the Vannevar Bush Professor of Electrical Engineering and Computer Science. “In integrated circuits, individual transistors have slightly different properties coined device variations,” he explains, “and you could then use that variability and combine that variability with higher-level circuits to create a unique ID for the device. And once you have that, then you can use that unique ID as a part of a security protocol. Something like transistor variability is hard to replicate from device to device, so that’s what gives it its uniqueness, versus storing a particular fixed ID.” The concept is based on what are known as physically unclonable functions, or PUFs.

    The team decided to try to apply that PUF principle to the problem of fake seeds, and the use of silk proteins was a natural choice because the material is not only harmless to the environment but also classified by the Food and Drug Administration in the “generally recognized as safe” category, so it requires no special approval for use on food products.

    “You could coat it on top of seeds,” Maji says, “and if you synthesize silk in a certain way, it will also have natural random variations. So that’s the idea, that every seed or every bag could have a unique signature.”

    Developing effective secure system solutions has long been one of Chandrakasan’s specialties, while Marelli has spent many years developing systems for applying silk coatings to a variety of fruits, vegetables, and seeds, so their collaboration was a natural for developing such a silk-based coding system toward enhanced security.

    “The challenge was what type of form factor to give to silk,” Sun says, “so that it can be fabricated very easily.” They developed a simple drop-casting approach that produces tags that are less than one-tenth of an inch in diameter. The second challenge was to develop “a way where we can read the uniqueness, in also a very high throughput and easy way.”

    For the unique silk-based codes, Marelli says, “eventually we found a way to add a color to these microparticles so that they assemble in random structures.” The resulting unique patterns can be read out not only by a spectrograph or a portable microscope, but even by an ordinary cellphone camera with a macro lens. This image can be processed locally to generate the PUF code and then sent to the cloud and compared with a secure database to ensure the authenticity of the product. “It’s random so that people cannot easily replicate it,” says Sun. “People cannot predict it without measuring it.”

    And the number of possible permutations that could result from the way they mix four basic types of colored silk nanoparticles is astronomical. “We were able to show that with a minimal amount of silk, we were able to generate 128 random bits of security,” Maji says. “So this gives rise to 2 to the power 128 possible combinations, which is extremely difficult to crack given the computational capabilities of the state-of-the-art computing systems.”

    Marelli says that “for us, it’s a good test bed in order to think out-of-the-box, and how we can have a path that somehow is more democratic.” In this case, that means “something that you can literally read with your phone, and you can fabricate by simply drop casting a solution, without using any advanced manufacturing technique, without going in a clean room.”

    Some additional work will be needed to make this a practical commercial product, Chandrakasan says. “There will have to be a development for at-scale reading” via smartphones. “So, that’s clearly a future opportunity.” But the principle now shows a clear path to the day when “a farmer could at least, maybe not every seed, but could maybe take some random seeds in a particular batch and verify them,” he says.

    The research was partially supported by the U.S. Office of Naval research and the National Science Foundation, Analog Devices Inc., an EECS Mathworks fellowship, and a Paul M. Cook Career Development Professorship. More

  • in

    Microparticles could help prevent vitamin A deficiency

    Vitamin A deficiency is the world’s leading cause of childhood blindness, and in severe cases, it can be fatal. About one-third of the global population of preschool-aged children suffer from this vitamin deficiency, which is most prevalent in sub-Saharan Africa and South Asia.

    MIT researchers have now developed a new way to fortify foods with vitamin A, which they hope could help to improve the health of millions of people around the world. In a new study, they showed that encapsulating vitamin A in a protective polymer prevents the nutrient from being broken down during cooking or storage.

    “Vitamin A is a very important micronutrient, but it’s an unstable molecule,” says Ana Jaklenec, a research scientist at MIT’s Koch Institute for Integrative Cancer Research. “We wanted to see if our encapsulated vitamin A could fortify a food vehicle like bouillon cubes or flour, throughout storage and cooking, and whether the vitamin A could remain biologically active and be absorbed.”

    In a small clinical trial, the researchers showed that when people ate bread fortified with encapsulated vitamin A, the bioavailability of the nutrient was similar to when they consumed vitamin A on its own. The technology has been licensed to two companies that hope to develop it for use in food products.

    “This is a study that our team is really excited about because it shows that everything we did in test tubes and animals works safely and effectively in humans,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute. “We hope this opens the door for someday helping millions, if not billions, of people in the developing world.”

    Jaklenec and Langer are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. The paper’s lead author is former MIT postdoc Wen Tang, who is now an associate professor at South China University of Technology.

    Nutrient stability

    Vitamin A is critical not only for vision but also the functioning of the immune system and organs such as the heart and lungs. Efforts to add vitamin A to bread or other foods such as bouillon cubes, which are commonly consumed in West African countries, have been largely unsuccessful because the vitamin breaks down during storage or cooking.

    In a 2019 study, the MIT team showed that they could use a polymer called BMC to encapsulate nutrients, including iron, vitamin A, and several others. They showed that this protective coating improved the shelf life of the nutrients, and that people who consumed bread fortified with encapsulated iron were able to absorb the iron.

    BMC is classified by the FDA as “generally regarded as safe,” and is already used in coatings for drugs and dietary supplements. In the new study, the researchers focused on using this polymer to encapsulate vitamin A, a nutrient that is very sensitive to temperature and ultraviolet light.

    Using an industrial process known as a spinning disc process, the researchers mixed vitamin A with the polymer to form particles 100 to 200 microns in diameter. They also coated the particles with starch, which prevents them from sticking to each other.

    The researchers found that vitamin A encapsulated in the polymer particles were more resistant to degradation by intense light, high temperatures, or boiling water. Under those conditions, much more vitamin A remained active than when the vitamin A was free or when it was delivered in a form called VitA 250, which is currently the most stable form of vitamin A used for food fortification.

    The researchers also showed that the encapsulated particles could be easily incorporated into flour or bouillon cubes. To test how well they would survive long-term storage, the researchers exposed the cubes to harsh conditions, as recommended by the World Health Organization: 40 degrees Celsius (104 degrees Fahrenheit) and 75 percent humidity. Under those conditions, the encapsulated vitamin A was much more stable than other forms of vitamin A. 

    “The enhanced stability of vitamin A with our technology can ensure that the vitamin A-fortified food does provide the recommended daily uptake of vitamin A, even after long-term storage in a hot humidified environment, and cooking processes such as boiling or baking,” Tang says. “People who are suffering from vitamin A deficiency and want to get vitamin A through fortified food will benefit, without changing their daily routines, and without wondering how much vitamin A is still in the food.”

    Vitamin absorption

    When the researchers cooked their encapsulated particles and then fed them to animals, they found that 30 percent of the vitamin A was absorbed, the same as free uncooked vitamin A, compared to about 3 percent of free vitamin A that had been cooked.

    Working with Biofortis, a company that does dietary clinical testing, the researchers then evaluated how well vitamin A was absorbed in people who ate foods fortified with the particles. For this study, the researchers incorporated the particles into bread, then measured vitamin A levels in the blood over a 24-hour period after the bread was consumed. They found that when vitamin A was encapsulated in the BMC polymer, it was absorbed from the food at levels comparable to free vitamin A, indicating that it is readily released in bioactive form.

    Two companies have licensed the technology and are focusing on developing products fortified with vitamin A and other nutrients. A benefit corporation called Particles for Humanity, funded by the Bill and Melinda Gates Foundation, is working with partners in Africa to incorporate this technology into existing fortification efforts. Another company called VitaKey, founded by Jaklenec, Langer, and others, is working on using this approach to add nutrients to a variety of foods and beverages.

    The research was funded by the Bill and Melinda Gates Foundation. Other authors of the paper include Jia Zhuang, Aaron Anselmo, Xian Xu, Aranda Duan, Ruojie Zhang, James Sugarman, Yingying Zeng, Evan Rosenberg, Tyler Graf, Kevin McHugh, Stephany Tzeng, Adam Behrens, Lisa Freed, Lihong Jing, Surangi Jayawardena, Shelley Weinstock, Xiao Le, Christopher Sears, James Oxley, John Daristotle, and Joe Collins. More

  • in

    Machinery of the state

    In Mai Hassan’s studies of Kenya, she documented the emergence of a sprawling administrative network officially billed as encouraging economic development, overseeing the population, and bolstering democracy. But Hassan’s field interviews and archival research revealed a more sinister purpose for the hundreds of administrative and security offices dotting the nation: “They were there to do the presidents’ bidding, which often involved coercing their own countrymen.”

    This research served as a catalyst for Hassan, who joined MIT as an associate professor of political science in July, to investigate what she calls the “politicized management of bureaucracy and the state.” She set out to “understand the motivations, capacities, and roles of people administering state programs and social functions,” she says. “I realized the state is not a faceless being, but instead comprised of bureaucrats carrying out functions on behalf of the state and the regime that runs it.”

    Today, Hassan’s portfolio encompasses not just the bureaucratic state but democratization efforts in Kenya and elsewhere in the East Africa region, including her native Sudan. Her research highlights the difficulties of democratization. “I’m finding that the conditions under which people come together for overthrowing an autocratic regime really matter, because those conditions may actually impede a nation from achieving democracy,” she says.

    A coordinated bureaucracy

    Hassan’s academic engagement with the state’s administrative machinery began during graduate school at Harvard University, where she earned her master’s and doctorate in government. While working with a community trash and sanitation program in some Kenyan Maasai communities, Hassan recalls “shepherding myself from office to office, meeting different bureaucrats to obtain the same approvals but for different jurisdictions.” The Kenyan state had recently set up hundreds of new local administrative units, motivated by what it claimed was the need for greater efficiency. But to Hassan’s eyes, “the administrative network was not well organized, seemed costly to maintain, and seemed to hinder — not bolster — development,” she says. What then, she wondered, was “the political logic behind such state restructuring?”

    Hassan began researching this bureaucratic transformation of Kenya, speaking with administrators in communities large and small who were charged with handling the business of the state. These studies yielded a wealth of findings for her dissertation, and for multiple journals.

    But upon finishing this tranche of research, Hassan realized that it was insufficient simply to study the structure of the state. “Understanding the role of new administrative structures for politics, development, and governance fundamentally requires that we understand who the government has put in charge of them,” she says. Among her insights:

    “The president’s office knows a lot of these administrators, and thinks about their strengths, limitations, and fit within a community,” says Hassan. Some administrators served the purposes of the central government by setting up water irrigation projects or building a new school. But in other villages, the state chose administrators who could act “much more coercively, ignoring development needs, throwing youth who supported the opposition into jail, and spending resources exclusively on policing.”

    Hassan’s work showed that in communities characterized by strong political opposition, “the local administration was always more coercive, regardless of an elected or autocratic president,” she says. Notably, the tenures of such officials proved shorter than those of their peers. “Once administrators get to know a community — going to church and the market with residents — it’s hard to coerce them,” explains Hassan.

    These short tenures come with costs, she notes: “Spending significant time in a station is useful for development, because you know exactly whom to hire if you want to build a school or get something done efficiently.” Politicizing these assignments undermines efforts at delivery of services and, more broadly, economic improvement nationwide. “Regimes that are more invested in retaining power must devote resources to establishing and maintaining control, resources that could otherwise be used for development and the welfare of citizens,” she says.

    Hassan wove together her research covering three presidents over a 50-year period, in the book, “Regime Threats and State Solutions: Bureaucratic Loyalty and Embeddedness in Kenya” (2020, Cambridge University Press), named a Foreign Affairs Best Book of 2020.

    Sudanese roots

    The role of the state in fulfilling the needs of its citizens has long fascinated Hassan. Her grandfather, who had served as Sudan’s ambassador to the USSR, talked to her about the advantages of a centralized government “that allocated resources to reduce inequality,” she says.

    Politics often dominated the conversation in gatherings of Hassan’s family and friends. Her parents immigrated to northern Virginia when she was very young, and many relatives joined them, part of a steady flow of Sudanese fleeing political turmoil and oppression.

    “A lot of people had expected more from the Sudanese state after independence and didn’t get it,” she says. “People had hopes for what the government could and should do.”

    Hassan’s Sudanese roots and ongoing connection to the Sudanese community have shaped her academic interests and goals. At the University of Virginia, she gravitated toward history and economics classes. But it was her time at the Ralph Bunche Summer institute that perhaps proved most pivotal in her journey. This five-week intensive program is offered by the American Political Science Association to introduce underrepresented undergraduate students to doctoral studies. “It was really compelling in this program to think rigorously about all the political ideas I’d heard as I was growing up, and find ways to challenge some assertions empirically,” she says.

    Regime change and civil society

    At Harvard, Hassan first set out to focus on Sudan for her doctoral program. “There wasn’t much scholarship on the country, and what there was lacked rigor,” she says. “That was something that needed to change.” But she decided to postpone this goal after realizing that she might be vulnerable as a student conducting field research there. She landed instead in Kenya, where she honed her interviewing and data collection skills.

    Today, empowered by her prior work, she has returned to Sudan. “I felt that the popular uprising in Sudan and ousting of the Islamist regime in 2019 should be documented and analyzed,” she says. “It was incredible that hundreds of thousands, if not millions, acted collectively to uproot a dictator, in the face of brutal violence from the state.”But “democracy is still uncertain there,” says Hassan. The broad coalition behind regime change “doesn’t know how to govern because different people and different sectors of society have different ideas about what democratic Sudan should look like,” she says. “Overthrowing an autocratic regime and having civil society come together to figure out what’s going to replace it require different things, and it’s unclear if a movement that accomplishes the first is well-suited to do the second.”

    Hassan believes that in order to create lasting democratization, “you need the hard work of building organizations, developing ways in which members learn to compromise among themselves, and make decisions and rules for how to move forward.”

    Hassan is enjoying the fall semester and teaching courses on autocracy and authoritarian regimes. She is excited as well about developing her work on African efforts at democratic mobilization in a political science department she describes as “policy-forward.”

    Over time, she hopes to connect with Institute scholars in the hard sciences to think about other challenges these nations are facing, such as climate change. “It’s really hot in Sudan, and it may be one of the first countries to become completely uninhabitable,” she says. “I’d like to explore strategies for growing crops differently or managing the exceedingly scarce resource of water, and figure out what kind of political discussions will be necessary to implement any changes. It is really critical to think about these problems in an interdisciplinary way.” More

  • in

    MIT PhD students shed light on important water and food research

    One glance at the news lately will reveal countless headlines on the dire state of global water and food security. Pollution, supply chain disruptions, and the war in Ukraine are all threatening water and food systems, compounding climate change impacts from heat waves, drought, floods, and wildfires.

    Every year, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) offers fellowships to outstanding MIT graduate students who are working on innovative ways to secure water and food supplies in light of these urgent worldwide threats. J-WAFS announced this year’s fellowship recipients last April. Aditya Ghodgaonkar and Devashish Gokhale were awarded Rasikbhai L. Meswani Fellowships for Water Solutions, which are made possible by a generous gift from Elina and Nikhil Meswani and family. James Zhang, Katharina Fransen, and Linzixuan (Rhoda) Zhang were awarded J-WAFS Fellowships for Water and Food Solutions. The J-WAFS Fellowship for Water and Food Solutions is funded in part by J-WAFS Research Affiliate companies: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    The five fellows were each awarded a stipend and full tuition for one semester. They also benefit from mentorship, networking connections, and opportunities to showcase their research.

    “This year’s cohort of J-WAFS fellows show an indefatigable drive to explore, create, and push back boundaries,” says John H. Lienhard, director of J-WAFS. “Their passion and determination to create positive change for humanity are evident in these unique video portraits, which describe their solutions-oriented research in water and food,” Lienhard adds.

    J-WAFS funder Community Jameel recently commissioned video portraitures of each student that highlight their work and their inspiration to solve challenges in water and food. More about each J-WAFS fellow and their research follows.

    Play video

    Katharina Fransen

    In Professor Bradley Olsen’s lab in the Department of Chemical Engineering, Katharina Fransen works to develop biologically-based, biodegradable plastics which can be used for food packing that won’t pollute the environment. Fransen, a third-year PhD student, is motivated by the challenge of protecting the most vulnerable global communities from waste generated by the materials that are essential to connecting them to the global food supply. “We can’t ensure that all of our plastic waste gets recycled or reused, and so we want to make sure that if it does escape into the environment it can degrade, and that’s kind of where a lot of my research really comes in,” says Fransen. Most of her work involves creating polymers, or “really long chains of chemicals,” kind of like the paper rings a lot of us looped into chains as kids, Fransen explains. The polymers are optimized for food packaging applications to keep food fresher for longer, preventing food waste. Fransen says she finds the work “really interesting from the scientific perspective as well as from the idea that [she’s] going to make the world a little better with these new materials.” She adds, “I think it is both really fulfilling and really exciting and engaging.”

    Play video

    Aditya Ghodgaonkar

    “When I went to Kenya this past spring break, I had an opportunity to meet a lot of farmers and talk to them about what kind of maintenance issues they face,” says Aditya Ghodgaonkar, PhD candidate in the Department of Mechanical Engineering. Ghodgaonkar works with Associate Professor Amos Winter in the Global Engineering and Research (GEAR) Lab, where he designs hydraulic components for drip irrigation systems to make them water-efficient, off-grid, inexpensive, and low-maintenance. On his trip to Kenya, Ghodgaonkar gained firsthand knowledge from farmers about a common problem they encounter: clogging of drip irrigation emitters. He learned that clogging can be an expensive technical challenge to diagnose, mitigate, and resolve. He decided to focus his attention on designing emitters that are resistant to clogging, testing with sand and passive hydrodynamic filtration back in the lab at MIT. “I got into this from an academic standpoint,” says Ghodgaonkar. “It is only once I started working on the emitters, spoke with industrial partners that make these emitters, spoke with farmers, that I really truly appreciated the impact of what we’re doing.”

    Play video

    Devashish Gokhale

    Devashish Gokhale is a PhD student advised by Professor Patrick Doyle in the Department of Chemical Engineering. Gokhale’s commitment to global water security stems from his childhood in Pune, India, where both flooding and drought can occur depending on the time of year. “I’ve had these experiences where there’s been too much water and also too little water” he recalls. At MIT, Gokhale is developing cost-effective, sustainable, and reusable materials for water treatment with a focus on the elimination of emerging contaminants and low-concentration pollutants like heavy metals. Specifically, he works on making and optimizing polymeric hydrogel microparticles that can absorb micropollutants. “I know how important it is to do something which is not just scientifically interesting, but something which is impactful in a real way,” says Gokhale. Before starting a research project he asks himself, “are people going to be able to afford this? Is it really going to reach the people who need it the most?” Adding these constraints in the beginning of the research process sometimes makes the problem more difficult to solve, but Gokhale notes that in the end, the solution is much more promising.

    Play video

    James Zhang

    “We don’t really think much about it, it’s transparent, odorless, we just turn on our sink in many parts of the world and it just flows through,” says James Zhang when talking about water. Yet he notes that “many other parts of the world face water scarcity and this will only get worse due to global climate change.” A PhD student in the Department of Mechanical Engineering, Zhang works in the Nano Engineering Laboratory with Professor Gang Chen. Zhang is working on a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light at different wavelengths interacts with liquids at the surface, particularly with brackish water surfaces. With strong theoretical and experimental components, his research could lead to innovations in desalinating water at high energy efficiencies. Zhang hopes that the technology can one day “produce lots of clean water for communities around the world that currently don’t have access to fresh water,” and create a new appreciation for this common liquid that many of us might not think about on a day-to-day basis.

    Play video

    Linzixuan (Rhoda) Zhang

    “Around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” says chemical engineering PhD candidate Linzixuan (Rhoda) Zhang. This fact led Zhang to develop a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. With her advisors, Professor Robert Langer and Research Scientist Ana Jaklenec, Zhang brings biomedical engineering approaches to global health issues. Zhang says that “one of the most serious problems is vitamin A deficiency, because vitamin A is not very stable.” She goes on to explain that although vitamin A is present in different vegetables, when the vegetables are cooked, vitamin A can easily degrade. Zhang helped develop a group of biodegradable polymers that can stabilize micronutrients under cooking and storage conditions. With this technology, vitamin A, for example, could be encapsulated and effectively stabilized under boiling water. The platform has also shown efficient release in a simulation of the stomach environment. Zhang says it is the “little, tiny steps every day that are pushing us forward to the final impactful product.” More

  • in

    Advancing the energy transition amidst global crises

    “The past six years have been the warmest on the planet, and our track record on climate change mitigation is drastically short of what it needs to be,” said Robert C. Armstrong, MIT Energy Initiative (MITEI) director and the Chevron Professor of Chemical Engineering, introducing MITEI’s 15th Annual Research Conference.

    At the symposium, participants from academia, industry, and finance acknowledged the deepening difficulties of decarbonizing a world rocked by geopolitical conflicts and suffering from supply chain disruptions, energy insecurity, inflation, and a persistent pandemic. In spite of this grim backdrop, the conference offered evidence of significant progress in the energy transition. Researchers provided glimpses of a low-carbon future, presenting advances in such areas as long-duration energy storage, carbon capture, and renewable technologies.

    In his keynote remarks, Ernest J. Moniz, the Cecil and Ida Green Professor of Physics and Engineering Systems Emeritus, founding director of MITEI, and former U.S. secretary of energy, highlighted “four areas that have materially changed in the last year” that could shake up, and possibly accelerate, efforts to address climate change.

    Extreme weather seems to be propelling the public and policy makers of both U.S. parties toward “convergence … at least in recognition of the challenge,” Moniz said. He perceives a growing consensus that climate goals will require — in diminishing order of certainty — firm (always-on) power to complement renewable energy sources, a fuel (such as hydrogen) flowing alongside electricity, and removal of atmospheric carbon dioxide (CO2).

    Russia’s invasion of Ukraine, with its “weaponization of natural gas” and global energy impacts, underscores the idea that climate, energy security, and geopolitics “are now more or less recognized widely as one conversation.” Moniz pointed as well to new U.S. laws on climate change and infrastructure that will amplify the role of science and technology and “address the drive to technological dominance by China.”

    The rapid transformation of energy systems will require a comprehensive industrial policy, Moniz said. Government and industry must select and rapidly develop low-carbon fuels, firm power sources (possibly including nuclear power), CO2 removal systems, and long-duration energy storage technologies. “We will need to make progress on all fronts literally in this decade to come close to our goals for climate change mitigation,” he concluded.

    Global cooperation?

    Over two days, conference participants delved into many of the issues Moniz raised. In one of the first panels, scholars pondered whether the international community could forge a coordinated climate change response. The United States’ rift with China, especially over technology trade policies, loomed large.

    “Hatred of China is a bipartisan hobby and passion, but a blanket approach isn’t right, even for the sake of national security,” said Yasheng Huang, the Epoch Foundation Professor of Global Economics and Management at the MIT Sloan School of Management. “Although the United States and China working together would have huge effects for both countries, it is politically unpalatable in the short term,” said F. Taylor Fravel, the Arthur and Ruth Sloan Professor of Political Science and director of the MIT Security Studies Program. John E. Parsons, deputy director for research at the MIT Center for Energy and Environmental Policy Research, suggested that the United States should use this moment “to get our own act together … and start doing things,” such as building nuclear power plants in a cost-effective way.

    Debating carbon removal

    Several panels took up the matter of carbon emissions and the most promising technologies for contending with them. Charles Harvey, MIT professor of civil and environmental engineering, and Howard Herzog, a senior research engineer at MITEI, set the stage early, debating whether capturing carbon was essential to reaching net-zero targets.

    “I have no trouble getting to net zero without carbon capture and storage,” said David Keith, the Gordon McKay Professor of Applied Physics at Harvard University, in a subsequent roundtable. Carbon capture seems more risky to Keith than solar geoengineering, which involves injecting sulfur into the stratosphere to offset CO2 and its heat-trapping impacts.

    There are new ways of moving carbon from where it’s a problem to where it’s safer. Kripa K. Varanasi, MIT professor of mechanical engineering, described a process for modulating the pH of ocean water to remove CO2. Timothy Krysiek, managing director for Equinor Ventures, talked about construction of a 900-kilometer pipeline transporting CO2 from northern Germany to a large-scale storage site located in Norwegian waters 3,000 meters below the seabed. “We can use these offshore Norwegian assets as a giant carbon sink for Europe,” he said.

    A startup showcase featured additional approaches to the carbon challenge. Mantel, which received MITEI Seed Fund money, is developing molten salt material to capture carbon for long-term storage or for use in generating electricity. Verdox has come up with an electrochemical process for capturing dilute CO2 from the atmosphere.

    But while much of the global warming discussion focuses on CO2, other greenhouse gases are menacing. Another panel discussed measuring and mitigating these pollutants. “Methane has 82 times more warming power than CO2 from the point of emission,” said Desirée L. Plata, MIT associate professor of civil and environmental engineering. “Cutting methane is the strongest lever we have to slow climate change in the next 25 years — really the only lever.”

    Steven Hamburg, chief scientist and senior vice president of the Environmental Defense Fund, cautioned that emission of hydrogen molecules into the atmosphere can cause increases in other greenhouse gases such as methane, ozone, and water vapor. As researchers and industry turn to hydrogen as a fuel or as a feedstock for commercial processes, “we will need to minimize leakage … or risk increasing warming,” he said.

    Supply chains, markets, and new energy ventures

    In panels on energy storage and the clean energy supply chain, there were interesting discussions of challenges ahead. High-density energy materials such as lithium, cobalt, nickel, copper, and vanadium for grid-scale energy storage, electric vehicles (EVs), and other clean energy technologies, can be difficult to source. “These often come from water-stressed regions, and we need to be super thoughtful about environmental stresses,” said Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. She also noted that in light of the explosive growth in demand for metals such as lithium, recycling EVs won’t be of much help. “The amount of material coming back from end-of-life batteries is minor,” she said, until EVs are much further along in their adoption cycle.

    Arvind Sanger, founder and managing partner of Geosphere Capital, said that the United States should be developing its own rare earths and minerals, although gaining the know-how will take time, and overcoming “NIMBYism” (not in my backyard-ism) is a challenge. Sanger emphasized that we must continue to use “denser sources of energy” to catalyze the energy transition over the next decade. In particular, Sanger noted that “for every transition technology, steel is needed,” and steel is made in furnaces that use coal and natural gas. “It’s completely woolly-headed to think we can just go to a zero-fossil fuel future in a hurry,” he said.

    The topic of power markets occupied another panel, which focused on ways to ensure the distribution of reliable and affordable zero-carbon energy. Integrating intermittent resources such as wind and solar into the grid requires a suite of retail markets and new digital tools, said Anuradha Annaswamy, director of MIT’s Active-Adaptive Control Laboratory. Tim Schittekatte, a postdoc at the MIT Sloan School of Management, proposed auctions as a way of insuring consumers against periods of high market costs.

    Another panel described the very different investment needs of new energy startups, such as longer research and development phases. Hooisweng Ow, technology principal at Eni Next LLC Ventures, which is developing drilling technology for geothermal energy, recommends joint development and partnerships to reduce risk. Michael Kearney SM ’11, PhD ’19, SM ’19 is a partner at The Engine, a venture firm built by MIT investing in path-breaking technology to solve the toughest challenges in climate and other problems. Kearney believes the emergence of new technologies and markets will bring on “a labor transition on an order of magnitude never seen before in this country,” he said. “Workforce development is not a natural zone for startups … and this will have to change.”

    Supporting the global South

    The opportunities and challenges of the energy transition look quite different in the developing world. In conversation with Robert Armstrong, Luhut Binsar Pandjaitan, the coordinating minister for maritime affairs and investment of the Republic of Indonesia, reported that his “nation is rich with solar, wind, and energy transition minerals like nickel and copper,” but cannot on its own tackle developing renewable energy or reducing carbon emissions and improving grid infrastructure. “Education is a top priority, and we are very far behind in high technologies,” he said. “We need help and support from MIT to achieve our target,” he said.

    Technologies that could springboard Indonesia and other nations of the global South toward their climate goals are emerging in MITEI-supported projects and at young companies MITEI helped spawn. Among the promising innovations unveiled at the conference are new materials and designs for cooling buildings in hot climates and reducing the environmental costs of construction, and a sponge-like substance that passively sucks moisture out of the air to lower the energy required for running air conditioners in humid climates.

    Other ideas on the move from lab to market have great potential for industrialized nations as well, such as a computational framework for maximizing the energy output of ocean-based wind farms; a process for using ammonia as a renewable fuel with no CO2 emissions; long-duration energy storage derived from the oxidation of iron; and a laser-based method for unlocking geothermal steam to drive power plants. More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    Professor Emeritus Richard “Dick” Eckaus, who specialized in development economics, dies at 96

    Richard “Dick” Eckaus, Ford Foundation International Professor of Economics, emeritus, in the Department of Economics, died on Sept. 11 in Boston. He was 96 years old.

    Eckaus was born in Kansas City, Missouri on April 30, 1926, the youngest of three children to parents who had emigrated from Lithuania. His father, Julius Eckaus, was a tailor, and his mother, Bessie (Finkelstein) Eckaus helped run the business. The family struggled to make ends meet financially but academic success offered Eckaus a way forward.

    He graduated from Westport High School, joined the United States Navy, and was awarded a college scholarship via the V-12 Navy College Training Program during World War II to study electrical engineering at Iowa State University. After graduating in 1944, Eckaus served on a base in New York State until he was discharged in 1946 as lieutenant junior grade.

    He attended Washington University in St. Louis, Missouri, on the GI Bill, graduating in 1948 with a master’s degree in economics, before relocating to Boston and serving as instructor of economics at Babson Institute, and then assistant and associate professor of economics at Brandeis University from 1951 to 1962. He concurrently earned a PhD in economics from MIT in 1954.

    The following year, the American Economic Review published “The Factor Proportions Problem in Economic Development,” a paper written by Eckaus that remained part of the macroeconomics canon for decades. He returned to MIT in 1962 and went on to teach development economics to generations of MIT students, serving as head of the department from 1986 to 1990 and continuing to work there for the remainder of his career.

    The development economist Paul Rosenstein-Rodan (1902-85), Eckaus’ mentor at MIT, took him to live and work first in Italy in 1954 and then in India in 1961. These stints helping governments abroad solidified Eckaus’ commitment to not only excelling in the field, but also creating opportunities for colleagues and students to contribute as well — occasionally in conjunction with the World Bank.

    Longtime colleague Abhijit Banerjee, a Nobel laureate, Ford Foundation International Professor of Economics, and director of the Abdul Latif Jameel Poverty Action Lab at MIT, recalls reading a reprint of Eckaus’ 1955 paper as an undergraduate in India. When he subsequently arrived at MIT as a doctoral candidate, he remembers “trying to tread lightly and not to take up too much space,” around the senior economist. “In fact, he made me feel so welcome,” Banerjee says. “He was both an outstanding scholar and someone who had the modesty and generosity to make younger scholars feel valued and heard.”

    The field of development economics provided Eckaus with a broad, powerful platform to work with governments in developing countries — including India, Egypt, Bhutan, Mexico, and Portugal — to set up economic systems. His development planning models helped governments to forecast where their economies were headed and how public policies could be implemented to shift or accelerate the direction.

    The Government of Portugal awarded Eckaus the Great-Cross of the Order of Prince Henry the Navigator after he brought teams from MIT to assist the country in its peaceful transition to democracy following the 1974 Carnation Revolution. Initiated at the request of the Portuguese Central Bank, these graduate students became some of the most prominent economists of their generation in America. They include Paul Krugman, Andrew Abel, Jeremy I. Bulow, and Kenneth Rogoff.

    His colleague for five decades, Paul Joskow, the Elizabeth and James Killian Professor of Economics at MIT, says that’s no surprise. “He was a real rock of the economics department. He deeply cared about the graduate students and younger faculty. He was a very supportive person.”

    Eckaus was also deeply interested in economic aspects of energy and environment, and in 1991 was instrumental in the formation of the MIT Joint Program on the Science and Policy of Global Change, a program that integrates the natural and social sciences in analysis of global climate threat. As Joint Program co-founder Henry Jacoby observes, “Dick provided crucial ideas as to how that kind of interdisciplinary work might be done at MIT. He was already 65 at the time, and continued for three decades to be active in guiding the research and analysis.”

    Although Eckaus retired officially in 1996, he continued to attend weekly faculty lunches, conduct research, mentor colleagues, and write papers related to climate change and the energy crisis. He leaves behind a trove of more than 100 published papers and eight authored and co-authored books.

    “He was continuously retooling himself and creating new interests. I was impressed by his agility of mind and his willingness to shift to new areas,” says his oldest living friend and peer, Jagdish Bhagwati, Columbia University professor of economics, law, and international relations, emeritus, and director of the Raj Center on Indian Economic Policies. “In their early career, economists usually write short theoretical articles that make large points, and Dick did that with two seminal articles in the leading professional journals of the time, the Quarterly Journal of Economics and the American Economic Review. Then, he shifted his focus to building large computable models. He also diversified by working in an advisory capacity in countries as diverse as Portugal and India. He was a ‘complete’ economist who straddled all styles of economics with distinction.” 

    Eckaus is survived by his beloved wife of 32 years Patricia Leahy Meaney of Brookline, Massachusetts. The two traveled the world, hiked the Alps, and collected pre-Columbian and contemporary art. He is lovingly remembered by his daughter Susan Miller; his step-son James Meaney (Bruna); step-daughter Caitlin Meaney Burrows (Lee); and four grandchildren, Chloe Burrows, Finley Burrows, Brandon Meaney, and Maria Sophia Meaney.

    In lieu of flowers, please consider a donation in Eckaus’ name to MIT Economics (77 Massachusetts Ave., Building E52-300, Cambridge, MA 02139). A memorial in his honor will be held later this year. More

  • in

    Passion projects prepare to launch

    At the start of the sixth annual MITdesignX “Pitch Day,” Svafa Grönfeldt, the program’s faculty director, made a point of noting that many of the teams about to showcase their ventures had changed direction multiple times on their projects.

    “Some of you have pivoted more times than we can count,” Grönfeldt said in her welcoming address. “This makes for a fantastic idea because you have the courage to actually question if your ideas are the right ones. In the true spirit of human-centered design, you actually try to understand the problem before you solve it!”

    MITdesignX, a venture accelerator based in the School of Architecture and Planning, is an interdisciplinary academic program operating at the intersection of design, business, and technology. The launching pad for startups focuses on applying design to engage complex problems and discovering high-impact solutions to address critical challenges facing the future of design, cities, and the global environment. The program reflects a new approach to entrepreneurship education, drawing on business theory, design thinking, and entrepreneurial practices.

    At this year’s event, 11 teams pitched their ideas before a panel of three judges, an on-site audience, and several hundred viewers watching the livestream event.

    “These teams have been working hard on solutions,” Gilad Rosenzweig, executive director of MITdesignX, told the audience. “They’re not designing solutions for people. They’re designing solutions with people.”

    Solving urgent problems

    Some of the issues addressed by the teams were lack of adequate housing, endangered food supplies, toxic pollution, and threats to democracy. Many of the students were inspired to create their venture because of problems they encountered in their careers or concerns impacting their home countries. The 25 team members in this year’s cohort represent work on five continents.

    “We’re very proud of our international representation because we want our impact to be felt outside of Cambridge,” said Rosenzweig. “We want to make an impact around the country and around the world.”

    John Devine, a JD/Masters in City Planning (MCP) candidate in the Department of Urban Studies and Planning, created a new software platform, “Civic Atlas.” In his pitch, he explained that having worked in city planning in Texas for a decade before coming to MIT, he saw how difficult it was for communities to wade through and comprehend the dense, technical language in city council agendas. Zoning cases, bond projects, and transportation investments are just some of the significant projects that affect a community, and Devine saw many instances where decisions were being made without community awareness as a result of inadequate communication.

    “When communities don’t have access to clear, accessible information, we have poor outcomes,” Devine told the audience. “I realized the solution to this is to make accessible and inclusive digital experiences that really facilitate communication between planners, developers, and members of the community.”

    Seizing the opportunity, Devine taught himself how to code and built a fully automated web tool for the Dallas City Planning Commission. The tool checks the city’s website daily and translates documents into interactive maps, allowing residents to view plans in their community. Devine is starting in Dallas, but says that there are more than 800 cities across the United States with a population greater than 50,000 that present an excellent target market for this product.

    “I think cities have a ton to gain from working with us, including building trust and communication with constituents — something that’s vital for city halls to function,” says Devine.

    Next steps for the cohort

    The judges for this year’s event — Yscaira Jimenez, founder of LaborX; Magnus Ingi Oskarsson of Eyrir Venture Management in Reykjavik, Iceland; and Frank Pawlitschek, director, HPI School of Entrepreneurship in Potsdam, Germany — deliberated to identify the best teams based on three criteria: most innovative, greatest impact, and best presentation. The competition was so strong that the judges decided to award two honorable mentions. This year’s awardees are:

    Atacama, a company that is developing biomaterials to replace plastics, received the “Most Innovative” award and $5,000. The company accelerates the adoption of renewable and sustainable materials through machine learning and robotics, ensuring performance, cost-effectiveness, and environmental impact. Its founders are Paloma Gonzalez-Rojas PhD ’21, Jose Tomas Dominguez, and Jose Antonio Gonzalez.
    Grain Box, a startup focusing on optimizing the post-harvest supply chain for smallholder farmers in rural India, was awarded “Greatest Impact” and a $5,000 award. Its founders are Mona Vijaykumar SMArchS ’22 and T.R. (Radha) Radhakrishnan.
    Lamarr.AI, which offers an autonomous solution for rapid building envelope diagnostics using AI and cloud computing, was recognized for “Best Presentation” and awarded $2,500. Its founders are Norhan Bayomi PhD ’22, Tarek Rakha, PhD ’15, and John E. Fernandez ’85, professor and director of the MIT Environmental Solutions Initiative.
    Honorable Mention: “News Detective,” a platform combining moderated, professional fact-checking and AI to fight misinformation on social media, created by rising senior Ilana Strauss.
    Honorable Mention: “La Firme,” which digitizes architectural services to reach families who self-build their homes in Latin America, created by Mora Orensanz MCP ’21, Fiorella Belli Ferro MCP ’21, and rising senior Raul Briceno Brignole.
    Following the award ceremony, Rosenzweig told the students that the process was not yet over because MITdesignX faculty and staff would always be available to continue guiding and supporting their journeys as they launch and grow their ventures.

    “You’re going to become alumni of MITdesignX,” he said. “You’re going to be joining over 50 teams that are working around the world, making an impact. They’re being recognized as leaders in innovation. They’re being recognized by investors who are helping them make an impact. This is your next step.” More