More stories

  • in

    New hardware offers faster computation for artificial intelligence, with much less energy

    As scientists push the boundaries of machine learning, the amount of time, energy, and money required to train increasingly complex neural network models is skyrocketing. A new area of artificial intelligence called analog deep learning promises faster computation with a fraction of the energy usage.

    Programmable resistors are the key building blocks in analog deep learning, just like transistors are the core elements for digital processors. By repeating arrays of programmable resistors in complex layers, researchers can create a network of analog artificial “neurons” and “synapses” that execute computations just like a digital neural network. This network can then be trained to achieve complex AI tasks like image recognition and natural language processing.

    A multidisciplinary team of MIT researchers set out to push the speed limits of a type of human-made analog synapse that they had previously developed. They utilized a practical inorganic material in the fabrication process that enables their devices to run 1 million times faster than previous versions, which is also about 1 million times faster than the synapses in the human brain.

    Moreover, this inorganic material also makes the resistor extremely energy-efficient. Unlike materials used in the earlier version of their device, the new material is compatible with silicon fabrication techniques. This change has enabled fabricating devices at the nanometer scale and could pave the way for integration into commercial computing hardware for deep-learning applications.

    “With that key insight, and the very powerful nanofabrication techniques we have at MIT.nano, we have been able to put these pieces together and demonstrate that these devices are intrinsically very fast and operate with reasonable voltages,” says senior author Jesús A. del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science (EECS). “This work has really put these devices at a point where they now look really promising for future applications.”

    “The working mechanism of the device is electrochemical insertion of the smallest ion, the proton, into an insulating oxide to modulate its electronic conductivity. Because we are working with very thin devices, we could accelerate the motion of this ion by using a strong electric field, and push these ionic devices to the nanosecond operation regime,” explains senior author Bilge Yildiz, the Breene M. Kerr Professor in the departments of Nuclear Science and Engineering and Materials Science and Engineering.

    “The action potential in biological cells rises and falls with a timescale of milliseconds, since the voltage difference of about 0.1 volt is constrained by the stability of water,” says senior author Ju Li, the Battelle Energy Alliance Professor of Nuclear Science and Engineering and professor of materials science and engineering, “Here we apply up to 10 volts across a special solid glass film of nanoscale thickness that conducts protons, without permanently damaging it. And the stronger the field, the faster the ionic devices.”

    These programmable resistors vastly increase the speed at which a neural network is trained, while drastically reducing the cost and energy to perform that training. This could help scientists develop deep learning models much more quickly, which could then be applied in uses like self-driving cars, fraud detection, or medical image analysis.

    “Once you have an analog processor, you will no longer be training networks everyone else is working on. You will be training networks with unprecedented complexities that no one else can afford to, and therefore vastly outperform them all. In other words, this is not a faster car, this is a spacecraft,” adds lead author and MIT postdoc Murat Onen.

    Co-authors include Frances M. Ross, the Ellen Swallow Richards Professor in the Department of Materials Science and Engineering; postdocs Nicolas Emond and Baoming Wang; and Difei Zhang, an EECS graduate student. The research is published today in Science.

    Accelerating deep learning

    Analog deep learning is faster and more energy-efficient than its digital counterpart for two main reasons. “First, computation is performed in memory, so enormous loads of data are not transferred back and forth from memory to a processor.” Analog processors also conduct operations in parallel. If the matrix size expands, an analog processor doesn’t need more time to complete new operations because all computation occurs simultaneously.

    The key element of MIT’s new analog processor technology is known as a protonic programmable resistor. These resistors, which are measured in nanometers (one nanometer is one billionth of a meter), are arranged in an array, like a chess board.

    In the human brain, learning happens due to the strengthening and weakening of connections between neurons, called synapses. Deep neural networks have long adopted this strategy, where the network weights are programmed through training algorithms. In the case of this new processor, increasing and decreasing the electrical conductance of protonic resistors enables analog machine learning.

    The conductance is controlled by the movement of protons. To increase the conductance, more protons are pushed into a channel in the resistor, while to decrease conductance protons are taken out. This is accomplished using an electrolyte (similar to that of a battery) that conducts protons but blocks electrons.

    To develop a super-fast and highly energy efficient programmable protonic resistor, the researchers looked to different materials for the electrolyte. While other devices used organic compounds, Onen focused on inorganic phosphosilicate glass (PSG).

    PSG is basically silicon dioxide, which is the powdery desiccant material found in tiny bags that come in the box with new furniture to remove moisture. It is studied as a proton conductor under humidified conditions for fuel cells. It is also the most well-known oxide used in silicon processing. To make PSG, a tiny bit of phosphorus is added to the silicon to give it special characteristics for proton conduction.

    Onen hypothesized that an optimized PSG could have a high proton conductivity at room temperature without the need for water, which would make it an ideal solid electrolyte for this application. He was right.

    Surprising speed

    PSG enables ultrafast proton movement because it contains a multitude of nanometer-sized pores whose surfaces provide paths for proton diffusion. It can also withstand very strong, pulsed electric fields. This is critical, Onen explains, because applying more voltage to the device enables protons to move at blinding speeds.

    “The speed certainly was surprising. Normally, we would not apply such extreme fields across devices, in order to not turn them into ash. But instead, protons ended up shuttling at immense speeds across the device stack, specifically a million times faster compared to what we had before. And this movement doesn’t damage anything, thanks to the small size and low mass of protons. It is almost like teleporting,” he says.

    “The nanosecond timescale means we are close to the ballistic or even quantum tunneling regime for the proton, under such an extreme field,” adds Li.

    Because the protons don’t damage the material, the resistor can run for millions of cycles without breaking down. This new electrolyte enabled a programmable protonic resistor that is a million times faster than their previous device and can operate effectively at room temperature, which is important for incorporating it into computing hardware.

    Thanks to the insulating properties of PSG, almost no electric current passes through the material as protons move. This makes the device extremely energy efficient, Onen adds.

    Now that they have demonstrated the effectiveness of these programmable resistors, the researchers plan to reengineer them for high-volume manufacturing, says del Alamo. Then they can study the properties of resistor arrays and scale them up so they can be embedded into systems.

    At the same time, they plan to study the materials to remove bottlenecks that limit the voltage that is required to efficiently transfer the protons to, through, and from the electrolyte.

    “Another exciting direction that these ionic devices can enable is energy-efficient hardware to emulate the neural circuits and synaptic plasticity rules that are deduced in neuroscience, beyond analog deep neural networks. We have already started such a collaboration with neuroscience, supported by the MIT Quest for Intelligence,” adds Yildiz.

    “The collaboration that we have is going to be essential to innovate in the future. The path forward is still going to be very challenging, but at the same time it is very exciting,” del Alamo says.

    “Intercalation reactions such as those found in lithium-ion batteries have been explored extensively for memory devices. This work demonstrates that proton-based memory devices deliver impressive and surprising switching speed and endurance,” says William Chueh, associate professor of materials science and engineering at Stanford University, who was not involved with this research. “It lays the foundation for a new class of memory devices for powering deep learning algorithms.”

    “This work demonstrates a significant breakthrough in biologically inspired resistive-memory devices. These all-solid-state protonic devices are based on exquisite atomic-scale control of protons, similar to biological synapses but at orders of magnitude faster rates,” says Elizabeth Dickey, the Teddy & Wilton Hawkins Distinguished Professor and head of the Department of Materials Science and Engineering at Carnegie Mellon University, who was not involved with this work. “I commend the interdisciplinary MIT team for this exciting development, which will enable future-generation computational devices.”

    This research is funded, in part, by the MIT-IBM Watson AI Lab. More

  • in

    Donald Sadoway wins European Inventor Award for liquid metal batteries

    MIT Professor Donald Sadoway has won the 2022 European Inventor Award, in the category for Non-European Patent Office Countries, for his work on liquid metal batteries that could enable the long-term storage of renewable energy.

    Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a longtime supporter and friend of the Materials Research Laboratory.

    “By enabling the large-scale storage of renewable energy, Donald Sadoway’s invention is a huge step towards the deployment of carbon-free electricity generation,” says António Campinos, president of the European Patent Office. “He has spent his career studying electrochemistry and has transformed this expertise into an invention that represents a huge step forward in the transition to green energy.”

    Sadoway was honored at the 2022 European Inventor Award ceremony on June 21. The award is one of Europe’s most prestigious innovation prizes and is presented annually to outstanding inventors from Europe and beyond who have made an exceptional contribution to society, technological progress, and economic growth.

    When accepting the award in Munich, Sadoway told the audience:

    “I am astonished. When I look at all the patented technologies that are represented at this event I see an abundance of excellence, all of them solutions to pressing problems. I wonder if the judges are assessing not only degrees of excellence but degrees of urgency. The liquid metal battery addresses an existential threat to the health of our atmosphere which is related to climate change.

    “By hosting this event the EPO celebrates invention. The thread that connects all the inventors is their efforts to make the world a better place. In my judgment there is no nobler pursuit. So perhaps this is a celebration of nobility.”

    Sadoway’s liquid metal batteries consist of three liquid layers of different densities, which naturally separate in the same way as oil and vinegar do in a salad dressing. The top and bottom layers are made from molten metals, with a middle layer of molten liquid salt.

    To keep the metals liquid, the batteries need to operate at extremely high temperatures, so Sadoway designed a system that is self-heating and insulated, requiring no external heating or cooling. They have a lifespan of more than 20 years, can maintain 99 percent of their capacity over 5,000 charging cycles, and have no combustible materials, meaning there is no fire risk.

    In 2010, with a patent for his invention and support from Bill Gates, Sadoway co-founded Ambri, based in Marlborough, Massachusetts just outside Boston, to develop a commercial product. The company will soon install a unit on a 3,700-acre development for a data center in Nevada. This battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Born in 1950 into a family of Ukrainian immigrants in Canada, Sadoway studied chemical metallurgy specializing in what he calls “extreme electrochemistry” — chemical reactions in molten salts and liquid metals that have been heated to over 500 degrees Celsius. After earning his BASc, MASc, and PhD, all from the University of Toronto, he joined the faculty at MIT in 1978. More

  • in

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards

    The MIT Climate and Sustainability Consortium (MCSC) has awarded 20 projects a total of $5 million over two years in its first-ever 2022 MCSC Seed Awards program. The winning projects are led by principal investigators across all five of MIT’s schools.

    The goal of the MCSC Seed Awards is to engage MIT researchers and link the economy-wide work of the consortium to ongoing and emerging climate and sustainability efforts across campus. The program offers further opportunity to build networks among the awarded projects to deepen the impact of each and ensure the total is greater than the sum of its parts.

    For example, to drive progress under the awards category Circularity and Materials, the MCSC can facilitate connections between the technologists at MIT who are developing recovery approaches for metals, plastics, and fiber; the urban planners who are uncovering barriers to reuse; and the engineers, who will look for efficiency opportunities in reverse supply chains.

    “The MCSC Seed Awards are designed to complement actions previously outlined in Fast Forward: MIT’s Climate Action Plan for the Decade and, more specifically, the Climate Grand Challenges,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium. “In collaboration with seed award recipients and MCSC industry members, we are eager to engage in interdisciplinary exploration and propel urgent advancements in climate and sustainability.” 

    By supporting MIT researchers with expertise in economics, infrastructure, community risk assessment, mobility, and alternative fuels, the MCSC will accelerate implementation of cross-disciplinary solutions in the awards category Decarbonized and Resilient Value Chains. Enhancing Natural Carbon Sinks and building connections to local communities will require associations across experts in ecosystem change, biodiversity, improved agricultural practice and engagement with farmers, all of which the consortium can begin to foster through the seed awards.

    “Funding opportunities across campus has been a top priority since launching the MCSC,” says Jeremy Gregory, MCSC executive director. “It is our honor to support innovative teams of MIT researchers through the inaugural 2022 MCSC Seed Awards program.”

    The winning projects are tightly aligned with the MCSC’s areas of focus, which were derived from a year of highly engaged collaborations with MCSC member companies. The projects apply across the member’s climate and sustainability goals.

    The MCSC’s 16 member companies span many industries, and since early 2021, have met with members of the MIT community to define focused problem statements for industry-specific challenges, identify meaningful partnerships and collaborations, and develop clear and scalable priorities. Outcomes from these collaborations laid the foundation for the focus areas, which have shaped the work of the MCSC. Specifically, the MCSC Industry Advisory Board engaged with MIT on key strategic directions, and played a critical role in the MCSC’s series of interactive events. These included virtual workshops hosted last summer, each on a specific topic that allowed companies to work with MIT and each other to align key assumptions, identify blind spots in corporate goal-setting, and leverage synergies between members, across industries. The work continued in follow-up sessions and an annual symposium.

    “We are excited to see how the seed award efforts will help our member companies reach or even exceed their ambitious climate targets, find new cross-sector links among each other, seek opportunities to lead, and ripple key lessons within their industry, while also deepening the Institute’s strong foundation in climate and sustainability research,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.

    As the seed projects take shape, the MCSC will provide ongoing opportunities for awardees to engage with the Industry Advisory Board and technical teams from the MCSC member companies to learn more about the potential for linking efforts to support and accelerate their climate and sustainability goals. Awardees will also have the chance to engage with other members of the MCSC community, including its interdisciplinary Faculty Steering Committee.

    “One of our mantras in the MCSC is to ‘amplify and extend’ existing efforts across campus; we’re always looking for ways to connect the collaborative industry relationships we’re building and the work we’re doing with other efforts on campus,” notes Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. “We feel the urgency as well as the potential, and we don’t want to miss opportunities to do more and go faster.”

    The MCSC Seed Awards complement the Climate Grand Challenges, a new initiative to mobilize the entire MIT research community around developing the bold, interdisciplinary solutions needed to address difficult, unsolved climate problems. The 27 finalist teams addressed four broad research themes, which align with the MCSC’s focus areas. From these finalist teams, five flagship projects were announced in April 2022.

    The parallels between MCSC’s focus areas and the Climate Grand Challenges themes underscore an important connection between the shared long-term research interests of industry and academia. The challenges that some of the world’s largest and most influential companies have identified are complementary to MIT’s ongoing research and innovation — highlighting the tremendous opportunity to develop breakthroughs and scalable solutions quickly and effectively. Special Presidential Envoy for Climate John Kerry underscored the importance of developing these scalable solutions, including critical new technology, during a conversation with MIT President L. Rafael Reif at MIT’s first Climate Grand Challenges showcase event last month.

    Both the MCSC Seed Awards and the Climate Grand Challenges are part of MIT’s larger commitment and initiative to combat climate change; this was underscored in “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021.

    The project titles and research leads for each of the 20 awardees listed below are categorized by MCSC focus area.

    Decarbonized and resilient value chains

    “Collaborative community mapping toolkit for resilience planning,” led by Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on Climate Grand Challenges flagship project) and Nicholas de Monchaux, professor and department head in the Department of Architecture
    “CP4All: Fast and local climate projections with scientific machine learning — towards accessibility for all of humanity,” led by Chris Hill, principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences and Dava Newman, director of the MIT Media Lab and the Apollo Program Professor in the Department of Aeronautics and Astronautics
    “Emissions reductions and productivity in U.S. manufacturing,” led by Mert Demirer, assistant professor of applied economics at the MIT Sloan School of Management and Jing Li, assistant professor and William Barton Rogers Career Development Chair of Energy Economics in the MIT Sloan School of Management
    “Logistics electrification through scalable and inter-operable charging infrastructure: operations, planning, and policy,” led by Alex Jacquillat, the 1942 Career Development Professor and assistant professor of operations research and statistics in the MIT Sloan School of Management
    “Powertrain and system design for LOHC-powered long-haul trucking,” led by William Green, the Hoyt Hottel Professor in Chemical Engineering in the Department of Chemical Engineering and postdoctoral officer, and Wai K. Cheng, professor in the Department of Mechanical Engineering and director of the Sloan Automotive Laboratory
    “Sustainable Separation and Purification of Biochemicals and Biofuels using Membranes,” led by John Lienhard, the Abdul Latif Jameel Professor of Water in the Department of Mechanical Engineering, director of the Abdul Latif Jameel Water and Food Systems Lab, and director of the Rohsenow Kendall Heat Transfer Laboratory; and Nicolas Hadjiconstantinou, professor in the Department of Mechanical Engineering, co-director of the Center for Computational Science and Engineering, associate director of the Center for Exascale Simulation of Materials in Extreme Environments, and graduate officer
    “Toolkit for assessing the vulnerability of industry infrastructure siting to climate change,” led by Michael Howland, assistant professor in the Department of Civil and Environmental Engineering

    Circularity and Materials

    “Colorimetric Sulfidation for Aluminum Recycling,” led by Antoine Allanore, associate professor of metallurgy in the Department of Materials Science and Engineering
    “Double Loop Circularity in Materials Design Demonstrated on Polyurethanes,” led by Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering, and Kristala Prather, the Arthur Dehon Little Professor and department executive officer in the Department of Chemical Engineering
    “Engineering of a microbial consortium to degrade and valorize plastic waste,” led by Otto Cordero, associate professor in the Department of Civil and Environmental Engineering, and Desiree Plata, the Gilbert W. Winslow (1937) Career Development Professor in Civil Engineering and associate professor in the Department of Civil and Environmental Engineering
    “Fruit-peel-inspired, biodegradable packaging platform with multifunctional barrier properties,” led by Kripa Varanasi, professor in the Department of Mechanical Engineering
    “High Throughput Screening of Sustainable Polyesters for Fibers,” led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Brad Olsen, Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering
    “Short-term and long-term efficiency gains in reverse supply chains,” led by Yossi Sheffi, the Elisha Gray II Professor of Engineering Systems, professor in the Department of Civil and Environmental Engineering, and director of the Center for Transportation and Logistics
    The costs and benefits of circularity in building construction, led by Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at the MIT Center for Real Estate and Department of Urban Studies and Planning, faculty director of the MIT Center for Real Estate, and faculty director for the MIT Sustainable Urbanization Lab; and Randolph Kirchain, principal research scientist and co-director of MIT Concrete Sustainability Hub

    Natural carbon sinks

    “Carbon sequestration through sustainable practices by smallholder farmers,” led by Joann de Zegher, the Maurice F. Strong Career Development Professor and assistant professor of operations management in the MIT Sloan School of Management, and Karen Zheng the George M. Bunker Professor and associate professor of operations management in the MIT Sloan School of Management
    “Coatings to protect and enhance diverse microbes for improved soil health and crop yields,” led by Ariel Furst, the Raymond A. (1921) And Helen E. St. Laurent Career Development Professor of Chemical Engineering in the Department of Chemical Engineering, and Mary Gehring, associate professor of biology in the Department of Biology, core member of the Whitehead Institute for Biomedical Research, and graduate officer
    “ECO-LENS: Mainstreaming biodiversity data through AI,” led by John Fernández, professor of building technology in the Department of Architecture and director of MIT Environmental Solutions Initiative
    “Growing season length, productivity, and carbon balance of global ecosystems under climate change,” led by Charles Harvey, professor in the Department of Civil and Environmental Engineering, and César Terrer, assistant professor in the Department of Civil and Environmental Engineering

    Social dimensions and adaptation

    “Anthro-engineering decarbonization at the million-person scale,” led by Manduhai Buyandelger, professor in the Anthropology Section, and Michael Short, the Class of ’42 Associate Professor of Nuclear Science and Engineering in the Department of Nuclear Science and Engineering
    “Sustainable solutions for climate change adaptation: weaving traditional ecological knowledge and STEAM,” led by Janelle Knox-Hayes, the Lister Brothers Associate Professor of Economic Geography and Planning and head of the Environmental Policy and Planning Group in the Department of Urban Studies and Planning, and Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on a Climate Grand Challenges flagship project) More

  • in

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    MIT’s Plasma Science and Fusion Center (PSFC) will substantially expand its fusion energy research and education activities under a new five-year agreement with Institute spinout Commonwealth Fusion Systems (CFS).

    “This expanded relationship puts MIT and PSFC in a prime position to be an even stronger academic leader that can help deliver the research and education needs of the burgeoning fusion energy industry, in part by utilizing the world’s first burning plasma and net energy fusion machine, SPARC,” says PSFC director Dennis Whyte. “CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education.”

    Commercial fusion energy has the potential to play a significant role in combating climate change, and there is a concurrent increase in interest from the energy sector, governments, and foundations. The new agreement, administered by the MIT Energy Initiative (MITEI), where CFS is a startup member, will help PSFC expand its fusion technology efforts with a wider variety of sponsors. The collaboration enables rapid execution at scale and technology transfer into the commercial sector as soon as possible.

    This new agreement doubles CFS’ financial commitment to PSFC, enabling greater recruitment and support of students, staff, and faculty. “We’ll significantly increase the number of graduate students and postdocs, and just as important they will be working on a more diverse set of fusion science and technology topics,” notes Whyte. It extends the collaboration between PSFC and CFS that resulted in numerous advances toward fusion power plants, including last fall’s demonstration of a high-temperature superconducting (HTS) fusion electromagnet with record-setting field strength of 20 tesla.

    The combined magnetic fusion efforts at PSFC will surpass those in place during the operations of the pioneering Alcator C-Mod tokamak device that operated from 1993 to 2016. This increase in activity reflects a moment when multiple fusion energy technologies are seeing rapidly accelerating development worldwide, and the emergence of a new fusion energy industry that would require thousands of trained people.

    MITEI director Robert Armstrong adds, “Our goal from the beginning was to create a membership model that would allow startups who have specific research challenges to leverage the MITEI ecosystem, including MIT faculty, students, and other MITEI members. The team at the PSFC and MITEI have worked seamlessly to support CFS, and we are excited for this next phase of the relationship.”

    PSFC is supporting CFS’ efforts toward realizing the SPARC fusion platform, which facilitates rapid development and refinement of elements (including HTS magnets) needed to build ARC, a compact, modular, high-field fusion power plant that would set the stage for commercial fusion energy production. The concepts originated in Whyte’s nuclear science and engineering class 22.63 (Principles of Fusion Engineering) and have been carried forward by students and PSFC staff, many of whom helped found CFS; the new activity will expand research into advanced technologies for the envisioned pilot plant.

    “This has been an incredibly effective collaboration that has resulted in a major breakthrough for commercial fusion with the successful demonstration of revolutionary fusion magnet technology that will enable the world’s first commercially relevant net energy fusion device, SPARC, currently under construction,” says Bob Mumgaard SM ’15, PhD ’15, CEO of Commonwealth Fusion Systems. “We look forward to this next phase in the collaboration with MIT as we tackle the critical research challenges ahead for the next steps toward fusion power plant development.”

    In the push for commercial fusion energy, the next five years are critical, requiring intensive work on materials longevity, heat transfer, fuel recycling, maintenance, and other crucial aspects of power plant development. It will need innovation from almost every engineering discipline. “Having great teams working now, it will cut the time needed to move from SPARC to ARC, and really unleash the creativity. And the thing MIT does so well is cut across disciplines,” says Whyte.

    “To address the climate crisis, the world needs to deploy existing clean energy solutions as widely and as quickly as possible, while at the same time developing new technologies — and our goal is that those new technologies will include fusion power,” says Maria T. Zuber, MIT’s vice president for research. “To make new climate solutions a reality, we need focused, sustained collaborations like the one between MIT and Commonwealth Fusion Systems. Delivering fusion power onto the grid is a monumental challenge, and the combined capabilities of these two organizations are what the challenge demands.”

    On a strategic level, climate change and the imperative need for widely implementable carbon-free energy have helped orient the PSFC team toward scalability. “Building one or 10 fusion plants doesn’t make a difference — we have to build thousands,” says Whyte. “The design decisions we make will impact the ability to do that down the road. The real enemy here is time, and we want to remove as many impediments as possible and commit to funding a new generation of scientific leaders. Those are critically important in a field with as much interdisciplinary integration as fusion.” More

  • in

    Team creates map for production of eco-friendly metals

    In work that could usher in more efficient, eco-friendly processes for producing important metals like lithium, iron, and cobalt, researchers from MIT and the SLAC National Accelerator Laboratory have mapped what is happening at the atomic level behind a particularly promising approach called metal electrolysis.

    By creating maps for a wide range of metals, they not only determined which metals should be easiest to produce using this approach, but also identified fundamental barriers behind the efficient production of others. As a result, the researchers’ map could become an important design tool for optimizing the production of all these metals.

    The work could also aid the development of metal-air batteries, cousins of the lithium-ion batteries used in today’s electric vehicles.

    Most of the metals key to society today are produced using fossil fuels. These fuels generate the high temperatures necessary to convert the original ore into its purified metal. But that process is a significant source of greenhouse gases — steel alone accounts for some 7 percent of carbon dioxide emissions globally. As a result, researchers from around the world are working to identify more eco-friendly ways for the production of metals.

    One promising approach is metal electrolysis, in which a metal oxide, the ore, is zapped with electricity to create pure metal with oxygen as the byproduct. That is the reaction explored at the atomic level in new research reported in the April 8 issue of the journal Chemistry of Materials.

    Donald Siegel is department chair and professor of mechanical engineering at the University of Texas at Austin. Says Siegel, who was not involved in the Chemistry of Materials study: “This work is an important contribution to improving the efficiency of metal production from metal oxides. It clarifies our understanding of low-carbon electrolysis processes by tracing the underlying thermodynamics back to elementary metal-oxygen interactions. I expect that this work will aid in the creation of design rules that will make these industrially important processes less reliant on fossil fuels.”

    Yang Shao-Horn, the JR East Professor of Engineering in MIT’s Department of Materials Science and Engineering (DMSE) and Department of Mechanical Engineering, is a leader of the current work, with Michal Bajdich of SLAC.

    “Here we aim to establish some basic understanding to predict the efficiency of electrochemical metal production and metal-air batteries from examining computed thermodynamic barriers for the conversion between metal and metal oxides,” says Shao-Horn, who is on the research team for MIT’s new Center for Electrification and Decarbonization of Industry, a winner of the Institute’s first-ever Climate Grand Challenges competition. Shao-Horn is also affiliated with MIT’s Materials Research Laboratory and Research Laboratory of Electronics.

    In addition to Shao-Horn and Bajdich, other authors of the Chemistry of Materials paper are Jaclyn R. Lunger, first author and a DMSE graduate student; mechanical engineering senior Naomi Lutz; and DMSE graduate student Jiayu Peng.

    Other applications

    The work could also aid in developing metal-air batteries such as lithium-air, aluminum-air, and zinc-air batteries. These cousins of the lithium-ion batteries used in today’s electric vehicles have the potential to electrify aviation because their energy densities are much higher. However, they are not yet on the market due to a variety of problems including inefficiency.

    Charging metal-air batteries also involves electrolysis. As a result, the new atomic-level understanding of these reactions could not only help engineers develop efficient electrochemical routes for metal production, but also design more efficient metal-air batteries.

    Learning from water splitting

    Electrolysis is also used to split water into oxygen and hydrogen, which stores the resulting energy. That hydrogen, in turn, could become an eco-friendly alternative to fossil fuels. Since much more is known about water electrolysis, the focus of Bajdich’s work at SLAC, than the electrolysis of metal oxides, the team compared the two processes for the first time.

    The result: “Slowly, we uncovered the elementary steps involved in metal electrolysis,” says Bajdich. The work was challenging, says Lunger, because “it was unclear to us what those steps are. We had to figure out how to get from A to B,” or from a metal oxide to metal and oxygen.

    All of the work was conducted with supercomputer simulations. “It’s like a sandbox of atoms, and then we play with them. It’s a little like Legos,” says Bajdich. More specifically, the team explored different scenarios for the electrolysis of several metals. Each involved different catalysts, molecules that boost the speed of a reaction.

    Says Lunger, “To optimize the reaction, you want to find the catalyst that makes it most efficient.” The team’s map is essentially a guide for designing the best catalysts for each different metal.

    What’s next? Lunger noted that the current work focused on the electrolysis of pure metals. “I’m interested in seeing what happens in more complex systems involving multiple metals. Can you make the reaction more efficient if there’s sodium and lithium present, or cadmium and cesium?”

    This work was supported by a U.S. Department of Energy Office of Science Graduate Student Research award. It was also supported by an MIT Energy Initiative fellowship, the Toyota Research Institute through the Accelerated Materials Design and Discovery Program, the Catalysis Science Program of Department of Energy, Office of Basic Energy Sciences, and by the Differentiate Program through the U.S. Advanced Research Projects Agency — Energy.  More

  • in

    How can we reduce the carbon footprint of global computing?

    The voracious appetite for energy from the world’s computers and communications technology presents a clear threat for the globe’s warming climate. That was the blunt assessment from presenters in the intensive two-day Climate Implications of Computing and Communications workshop held on March 3 and 4, hosted by MIT’s Climate and Sustainability Consortium (MCSC), MIT-IBM Watson AI Lab, and the Schwarzman College of Computing.

    The virtual event featured rich discussions and highlighted opportunities for collaboration among an interdisciplinary group of MIT faculty and researchers and industry leaders across multiple sectors — underscoring the power of academia and industry coming together.

    “If we continue with the existing trajectory of compute energy, by 2040, we are supposed to hit the world’s energy production capacity. The increase in compute energy and demand has been increasing at a much faster rate than the world energy production capacity increase,” said Bilge Yildiz, the Breene M. Kerr Professor in the MIT departments of Nuclear Science and Engineering and Materials Science and Engineering, one of the workshop’s 18 presenters. This computing energy projection draws from the Semiconductor Research Corporations’s decadal report.To cite just one example: Information and communications technology already account for more than 2 percent of global energy demand, which is on a par with the aviation industries emissions from fuel.“We are the very beginning of this data-driven world. We really need to start thinking about this and act now,” said presenter Evgeni Gousev, senior director at Qualcomm.  Innovative energy-efficiency optionsTo that end, the workshop presentations explored a host of energy-efficiency options, including specialized chip design, data center architecture, better algorithms, hardware modifications, and changes in consumer behavior. Industry leaders from AMD, Ericsson, Google, IBM, iRobot, NVIDIA, Qualcomm, Tertill, Texas Instruments, and Verizon outlined their companies’ energy-saving programs, while experts from across MIT provided insight into current research that could yield more efficient computing.Panel topics ranged from “Custom hardware for efficient computing” to “Hardware for new architectures” to “Algorithms for efficient computing,” among others.

    Visual representation of the conversation during the workshop session entitled “Energy Efficient Systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    The goal, said Yildiz, is to improve energy efficiency associated with computing by more than a million-fold.“I think part of the answer of how we make computing much more sustainable has to do with specialized architectures that have very high level of utilization,” said Darío Gil, IBM senior vice president and director of research, who stressed that solutions should be as “elegant” as possible.  For example, Gil illustrated an innovative chip design that uses vertical stacking to reduce the distance data has to travel, and thus reduces energy consumption. Surprisingly, more effective use of tape — a traditional medium for primary data storage — combined with specialized hard drives (HDD), can yield a dramatic savings in carbon dioxide emissions.Gil and presenters Bill Dally, chief scientist and senior vice president of research of NVIDIA; Ahmad Bahai, CTO of Texas Instruments; and others zeroed in on storage. Gil compared data to a floating iceberg in which we can have fast access to the “hot data” of the smaller visible part while the “cold data,” the large underwater mass, represents data that tolerates higher latency. Think about digital photo storage, Gil said. “Honestly, are you really retrieving all of those photographs on a continuous basis?” Storage systems should provide an optimized mix of of HDD for hot data and tape for cold data based on data access patterns.Bahai stressed the significant energy saving gained from segmenting standby and full processing. “We need to learn how to do nothing better,” he said. Dally spoke of mimicking the way our brain wakes up from a deep sleep, “We can wake [computers] up much faster, so we don’t need to keep them running in full speed.”Several workshop presenters spoke of a focus on “sparsity,” a matrix in which most of the elements are zero, as a way to improve efficiency in neural networks. Or as Dally said, “Never put off till tomorrow, where you could put off forever,” explaining efficiency is not “getting the most information with the fewest bits. It’s doing the most with the least energy.”Holistic and multidisciplinary approaches“We need both efficient algorithms and efficient hardware, and sometimes we need to co-design both the algorithm and the hardware for efficient computing,” said Song Han, a panel moderator and assistant professor in the Department of Electrical Engineering and Computer Science (EECS) at MIT.Some presenters were optimistic about innovations already underway. According to Ericsson’s research, as much as 15 percent of the carbon emissions globally can be reduced through the use of existing solutions, noted Mats Pellbäck Scharp, head of sustainability at Ericsson. For example, GPUs are more efficient than CPUs for AI, and the progression from 3G to 5G networks boosts energy savings.“5G is the most energy efficient standard ever,” said Scharp. “We can build 5G without increasing energy consumption.”Companies such as Google are optimizing energy use at their data centers through improved design, technology, and renewable energy. “Five of our data centers around the globe are operating near or above 90 percent carbon-free energy,” said Jeff Dean, Google’s senior fellow and senior vice president of Google Research.Yet, pointing to the possible slowdown in the doubling of transistors in an integrated circuit — or Moore’s Law — “We need new approaches to meet this compute demand,” said Sam Naffziger, AMD senior vice president, corporate fellow, and product technology architect. Naffziger spoke of addressing performance “overkill.” For example, “we’re finding in the gaming and machine learning space we can make use of lower-precision math to deliver an image that looks just as good with 16-bit computations as with 32-bit computations, and instead of legacy 32b math to train AI networks, we can use lower-energy 8b or 16b computations.”

    Visual representation of the conversation during the workshop session entitled “Wireless, networked, and distributed systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    Other presenters singled out compute at the edge as a prime energy hog.“We also have to change the devices that are put in our customers’ hands,” said Heidi Hemmer, senior vice president of engineering at Verizon. As we think about how we use energy, it is common to jump to data centers — but it really starts at the device itself, and the energy that the devices use. Then, we can think about home web routers, distributed networks, the data centers, and the hubs. “The devices are actually the least energy-efficient out of that,” concluded Hemmer.Some presenters had different perspectives. Several called for developing dedicated silicon chipsets for efficiency. However, panel moderator Muriel Medard, the Cecil H. Green Professor in EECS, described research at MIT, Boston University, and Maynooth University on the GRAND (Guessing Random Additive Noise Decoding) chip, saying, “rather than having obsolescence of chips as the new codes come in and in different standards, you can use one chip for all codes.”Whatever the chip or new algorithm, Helen Greiner, CEO of Tertill (a weeding robot) and co-founder of iRobot, emphasized that to get products to market, “We have to learn to go away from wanting to get the absolute latest and greatest, the most advanced processor that usually is more expensive.” She added, “I like to say robot demos are a dime a dozen, but robot products are very infrequent.”Greiner emphasized consumers can play a role in pushing for more energy-efficient products — just as drivers began to demand electric cars.Dean also sees an environmental role for the end user.“We have enabled our cloud customers to select which cloud region they want to run their computation in, and they can decide how important it is that they have a low carbon footprint,” he said, also citing other interfaces that might allow consumers to decide which air flights are more efficient or what impact installing a solar panel on their home would have.However, Scharp said, “Prolonging the life of your smartphone or tablet is really the best climate action you can do if you want to reduce your digital carbon footprint.”Facing increasing demandsDespite their optimism, the presenters acknowledged the world faces increasing compute demand from machine learning, AI, gaming, and especially, blockchain. Panel moderator Vivienne Sze, associate professor in EECS, noted the conundrum.“We can do a great job in making computing and communication really efficient. But there is this tendency that once things are very efficient, people use more of it, and this might result in an overall increase in the usage of these technologies, which will then increase our overall carbon footprint,” Sze said.Presenters saw great potential in academic/industry partnerships, particularly from research efforts on the academic side. “By combining these two forces together, you can really amplify the impact,” concluded Gousev.Presenters at the Climate Implications of Computing and Communications workshop also included: Joel Emer, professor of the practice in EECS at MIT; David Perreault, the Joseph F. and Nancy P. Keithley Professor of EECS at MIT; Jesús del Alamo, MIT Donner Professor and professor of electrical engineering in EECS at MIT; Heike Riel, IBM Fellow and head science and technology at IBM; and Takashi Ando, principal research staff member at IBM Research. The recorded workshop sessions are available on YouTube. More

  • in

    Using excess heat to improve electrolyzers and fuel cells

    Reducing the use of fossil fuels will have unintended consequences for the power-generation industry and beyond. For example, many industrial chemical processes use fossil-fuel byproducts as precursors to things like asphalt, glycerine, and other important chemicals. One solution to reduce the impact of the loss of fossil fuels on industrial chemical processes is to store and use the heat that nuclear fission produces. New MIT research has dramatically improved a way to put that heat toward generating chemicals through a process called electrolysis. 

    Electrolyzers are devices that use electricity to split water (H2O) and generate molecules of hydrogen (H2) and oxygen (O2). Hydrogen is used in fuel cells to generate electricity and drive electric cars or drones or in industrial operations like the production of steel, ammonia, and polymers. Electrolyzers can also take in water and carbon dioxide (CO2) and produce oxygen and ethylene (C2H4), a chemical used in polymers and elsewhere.

    There are three main types of electrolyzers. One type works at room temperature, but has downsides; they’re inefficient and require rare metals, such as platinum. A second type is more efficient but runs at high temperatures, above 700 degrees Celsius. But metals corrode at that temperature, and the devices need expensive sealing and insulation. The third type would be a Goldilocks solution for nuclear heat if it were perfected, running at 300-600 C and requiring mostly cheap materials like stainless steel. These cells have never been operated as efficiently as theory says they should. The new work, published this month in Nature, both illuminates the problem and offers a solution.

    A sandwich mystery

    The intermediate-temperature devices use what are called protonic ceramic electrochemical cells. Each cell is a sandwich, with a dense electrolyte layered between two porous electrodes. Water vapor is pumped into the top electrode. A wire on the side connects the two electrodes, and externally generated electricity runs from the top to the bottom. The voltage pulls electrons out of the water, which splits the molecule, releasing oxygen. A hydrogen atom without an electron is just a proton. The protons get pulled through the electrolyte to rejoin with the electrons at the bottom electrode and form H2 molecules, which are then collected.

    On its own, the electrolyte in the middle, made mainly of barium, cerium, and zirconium, conducts protons very well. “But when we put the same material into this three-layer device, the proton conductivity of the full cell is pretty bad,” says Yanhao Dong, a postdoc in MIT’s Department of Nuclear Science and Engineering and a paper co-author. “Its conductivity is only about 50 percent of the bulk form’s. We wondered why there’s an inconsistency here.”

    A couple of clues pointed them in the right direction. First, if they don’t prepare the cell very carefully, the top layer, only about 20 microns (.02 millimeters) thick, doesn’t stay attached. “Sometimes if you use just Scotch tape, it will peel off,” Dong says. Second, when they looked at a cross section of a device using a scanning electron microscope, they saw that the top surface of the electrolyte layer was flat, whereas the bottom surface of the porous electrode sitting on it was bumpy, and the two came into contact in only a few places. They didn’t bond well. That precarious interface leads to both structural de-lamination and poor proton passage from the electrode to the electrolyte.

    Acidic solution

    The solution turned out to be simple: researchers roughed up the top of the electrolyte. Specifically, they applied acid for 10 minutes, which etched grooves into the surface. Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and professor of materials science and engineering at MIT, and a paper co-author, likens it to sandblasting a surface before applying paint to increase adhesion. Their acid-treated cells produced about 200 percent more hydrogen per area at 1.5 volts at 600 C than did any previous cell of its type, and worked well down to 350 C with very little performance decay over extended operation. 

    “The authors reported a surprisingly simple yet highly effective surface treatment to dramatically improve the interface,” says Liangbing Hu, the director of the Center for Materials Innovation at the Maryland Energy Innovation Institute, who was not involved in the work. He calls the cell performance “exceptional.”

    “We are excited and surprised” by the results, Dong says. “The engineering solution seems quite simple. And that’s actually good, because it makes it very applicable to real applications.” In a practical product, many such cells would be stacked together to form a module. MIT’s partner in the project, Idaho National Laboratory, is very strong in engineering and prototyping, so Li expects to see electrolyzers based on this technology at scale before too long. “At the materials level, this is a breakthrough that shows that at a real-device scale you can work at this sweet spot of temperature of 350 to 600 degrees Celsius for nuclear fission and fusion reactors,” he says.

    “Reduced operating temperature enables cheaper materials for the large-scale assembly, including the stack,” says Idaho National Laboratory researcher and paper co-author Dong Ding. “The technology operates within the same temperature range as several important, current industrial processes, including ammonia production and CO2 reduction. Matching these temperatures will expedite the technology’s adoption within the existing industry.”

    “This is very significant for both Idaho National Lab and us,” Li adds, “because it bridges nuclear energy and renewable electricity.” He notes that the technology could also help fuel cells, which are basically electrolyzers run in reverse, using green hydrogen or hydrocarbons to generate electricity. According to Wei Wu, a materials scientist at Idaho National Laboratory and a paper co-author, “this technique is quite universal and compatible with other solid electrochemical devices.”

    Dong says it’s rare for a paper to advance both science and engineering to such a degree. “We are happy to combine those together and get both very good scientific understanding and also very good real-world performance.”

    This work, done in collaboration with Idaho National Laboratory, New Mexico State University, and the University of Nebraska–Lincoln, was funded, in part, by the U.S. Department of Energy. More

  • in

    Strengthening students’ knowledge and experience in climate and sustainability

    Tackling the climate crisis is central to MIT. Critical to this mission is harnessing the innovation, passion, and expertise of MIT’s talented students, from a variety of disciplines and backgrounds. To help raise this student involvement to the next level, the MIT Climate and Sustainability Consortium (MCSC) recently launched a program that will engage MIT undergraduates in a unique, year-long, interdisciplinary experience both developing and implementing climate and sustainability research projects.

    The MCSC Climate and Sustainability Scholars Program is a way for students to dive deeply and directly into climate and sustainability research, strengthen their skill sets in a variety of climate and sustainability-related areas, build their networks, and continue to embrace and grow their passion.The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research.

    The program, open to rising juniors and seniors from all majors and departments, is inspired by MIT’s SuperUROP program. Students will enroll in a year-long class while simultaneously engaging in research. Research projects will be climate- and sustainability-focused and can be on or off campus. The course will be initially facilitated by Desiree Plata, the Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.“Climate and sustainability challenges face real barriers in science, technology, policy, and beyond,” says Plata, who also serves on the MCSC’s Faculty Steering Committee. “We need to motivate an all-hands effort to bring MIT talent to bear on these challenges, and we need to give our students the tools to make tangible benefits within and between their disciplines. This was our goal in designing the MCSC Scholars Program, and it’s what I’m most excited about.”

    The Climate and Sustainability Scholars Program has relevance across all five schools, and the number of places the course is cross-listed continues to grow. As is the broader goal of the MCSC, the Climate and Sustainability Scholars Program aims to amplify and extend MIT’s expertise — through engaging students of all backgrounds and majors, bringing in faculty mentors and instructors from around the Institute, and identifying research opportunities and principal investigators that span disciplines. The student cohort model will also build off of the successful community-building endeavors by the MIT Energy Initiative and Environmental Solutions Initiative, among others, to bring students with similar interests together into an interdisciplinary, problem-solving space.The program’s fall semester will focus on key climate and sustainability topics, such as decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts, and humanities-based communication of climate topics, all while students engage in research. Students will simultaneously develop project proposals, participate in a project through MIT’s Undergraduate Research Opportunities Program, and communicate their work using written and oral media. The spring semester’s course will focus on research and experiential activities, and help students communicate their outputs in entrepreneurial or policy activities that would enable the research outcomes to be rapidly scaled for impact.Throughout the program, students will engage with their research mentors, additional mentors drawn from MCSC-affiliated faculty, postdoctoral Impact Fellows, and graduate students — and there will also be opportunities for interaction with representatives of MCSC member companies.“Providing opportunities for students to sharpen the skills and knowledge needed to pioneer solutions for climate change mitigation and adaptation is critical,” says Olivetti. “We are excited that the Climate and Sustainability Scholars Program can contribute to that important mission.” More