More stories

  • in

    Developing electricity-powered, low-emissions alternatives to carbon-intensive industrial processes

    On April 11, 2022, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This is the second article in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    One of the biggest leaps that humankind could take to drastically lower greenhouse gas emissions globally would be the complete decarbonization of industry. But without finding low-cost, environmentally friendly substitutes for industrial materials, the traditional production of steel, cement, ammonia, and ethylene will continue pumping out billions of tons of carbon annually; these sectors alone are responsible for at least one third of society’s global greenhouse gas emissions. 

    A major problem is that industrial manufacturers, whose success depends on reliable, cost-efficient, and large-scale production methods, are too heavily invested in processes that have historically been powered by fossil fuels to quickly switch to new alternatives. It’s a machine that kicked on more than 100 years ago, and which MIT electrochemical engineer Yet-Ming Chiang says we can’t shut off without major disruptions to the world’s massive supply chain of these materials. What’s needed, Chiang says, is a broader, collaborative clean energy effort that takes “targeted fundamental research, all the way through to pilot demonstrations that greatly lowers the risk for adoption of new technology by industry.”

    This would be a new approach to decarbonization of industrial materials production that relies on largely unexplored but cleaner electrochemical processes. New production methods could be optimized and integrated into the industrial machine to make it run on low-cost, renewable electricity in place of fossil fuels. 

    Recognizing this, Chiang, the Kyocera Professor in the Department of Materials Science and Engineering, teamed with research collaborator Bilge Yildiz, the Breene M. Kerr Professor of Nuclear Science and Engineering and professor of materials science and engineering, with key input from Karthish Manthiram, visiting professor in the Department of Chemical Engineering, to submit a project proposal to the MIT Climate Grand Challenges. Their plan: to create an innovation hub on campus that would bring together MIT researchers individually investigating decarbonization of steel, cement, ammonia, and ethylene under one roof, combining research equipment and directly collaborating on new methods to produce these four key materials.

    Many researchers across MIT have already signed on to join the effort, including Antoine Allanore, associate professor of metallurgy, who specializes in the development of sustainable materials and manufacturing processes, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the Department of Materials Science and Engineering, who is an expert in materials economics and sustainability. Other MIT faculty currently involved include Fikile Brushett, Betar Gallant, Ahmed Ghoniem, William Green, Jeffrey Grossman, Ju Li, Yuriy Román-Leshkov, Yang Shao-Horn, Robert Stoner, Yogesh Surendranath, Timothy Swager, and Kripa Varanasi.

    “The team we brought together has the expertise needed to tackle these challenges, including electrochemistry — using electricity to decarbonize these chemical processes — and materials science and engineering, process design and scale-up technoeconomic analysis, and system integration, which is all needed for this to go out from our labs to the field,” says Yildiz.

    Selected from a field of more than 100 proposals, their Center for Electrification and Decarbonization of Industry (CEDI) will be the first such institute worldwide dedicated to testing and scaling the most innovative and promising technologies in sustainable chemicals and materials. CEDI will work to facilitate rapid translation of lab discoveries into affordable, scalable industry solutions, with potential to offset as much as 15 percent of greenhouse gas emissions. The team estimates that some CEDI projects already underway could be commercialized within three years.

    “The real timeline is as soon as possible,” says Chiang.

    To achieve CEDI’s ambitious goals, a physical location is key, staffed with permanent faculty, as well as undergraduates, graduate students, and postdocs. Yildiz says the center’s success will depend on engaging student researchers to carry forward with research addressing the biggest ongoing challenges to decarbonization of industry.

    “We are training young scientists, students, on the learned urgency of the problem,” says Yildiz. “We empower them with the skills needed, and even if an individual project does not find the implementation in the field right away, at least, we would have trained the next generation that will continue to go after them in the field.”

    Chiang’s background in electrochemistry showed him how the efficiency of cement production could benefit from adopting clean electricity sources, and Yildiz’s work on ethylene, the source of plastic and one of industry’s most valued chemicals, has revealed overlooked cost benefits to switching to electrochemical processes with less expensive starting materials. With industry partners, they hope to continue these lines of fundamental research along with Allanore, who is focused on electrifying steel production, and Manthiram, who is developing new processes for ammonia. Olivetti will focus on understanding risks and barriers to implementation. This multilateral approach aims to speed up the timeline to industry adoption of new technologies at the scale needed for global impact.

    “One of the points of emphasis in this whole center is going to be applying technoeconomic analysis of what it takes to be successful at a technical and economic level, as early in the process as possible,” says Chiang.

    The impact of large-scale industry adoption of clean energy sources in these four key areas that CEDI plans to target first would be profound, as these sectors are currently responsible for 7.5 billion tons of emissions annually. There is the potential for even greater impact on emissions as new knowledge is applied to other industrial products beyond the initial four targets of steel, cement, ammonia, and ethylene. Meanwhile, the center will stand as a hub to attract new industry, government stakeholders, and research partners to collaborate on urgently needed solutions, both newly arising and long overdue.

    When Chiang and Yildiz first met to discuss ideas for MIT Climate Grand Challenges, they decided they wanted to build a climate research center that functioned unlike any other to help pivot large industry toward decarbonization. Beyond considering how new solutions will impact industry’s bottom line, CEDI will also investigate unique synergies that could arise from the electrification of industry, like processes that would create new byproducts that could be the feedstock to other industry processes, reducing waste and increasing efficiencies in the larger system. And because industry is so good at scaling, those added benefits would be widespread, finally replacing century-old technologies with critical updates designed to improve production and markedly reduce industry’s carbon footprint sooner rather than later.

    “Everything we do, we’re going to try to do with urgency,” Chiang says. “The fundamental research will be done with urgency, and the transition to commercialization, we’re going to do with urgency.” More

  • in

    Embracing ancient materials and 21st-century challenges

    When Sophia Mittman was 10 years old, she wanted to be an artist. But instead of using paint, she preferred the mud in her backyard. She sculpted it into pots and bowls like the ones she had seen at the archaeological museums, transforming the earthly material into something beautiful.

    Now an MIT senior studying materials science and engineering, Mittman seeks modern applications for sustainable materials in ways that benefit the community around her.

    Growing up in San Diego, California, Mittman was homeschooled, and enjoyed the process of teaching herself new things. After taking a pottery class in seventh grade, she became interested in sculpture, teaching herself how to make fused glass. From there, Mittman began making pottery and jewelry. This passion to create new things out of sustainable materials led her to pursue materials science, a subject she didn’t even know was originally offered at the Institute.

    “I didn’t know the science behind why those materials had the properties they did. And materials science explained it,” she says.

    During her first year at MIT, Mittman took 2.00b (Toy Product Design), which she considers one of her most memorable classes at the Institute. She remembers learning about the mechanical side of building, using drill presses and sanding machines to create things. However, her favorite part was the seminars on the weekends, where she learned how to make things such as stuffed animals or rolling wooden toys. She appreciated the opportunity to learn how to use everyday materials like wood to construct new and exciting gadgets.

    From there, Mittman got involved in the Glass Club, using blowtorches to melt rods of glass to make things like marbles and little fish decorations. She also took a few pottery and ceramics classes on campus, learning how to hone her skills to craft new things. Understanding MIT’s hands-on approach to learning, Mittman was excited to use her newly curated skills in the various workshops on campus to apply them to the real world.

    In the summer after her first year, Mittman became an undergraduate field and conservation science researcher for the Department of Civil and Environmental Engineering. She traveled to various cities across Italy to collaborate with international art restorers, conservation scientists, and museum curators to study archaeological materials and their applications to modern sustainability. One of her favorite parts was restoring the Roman baths, and studying the mosaics on the ground. She did a research project on Egyptian Blue, one of the first synthetic pigments, which has modern applications because of its infrared luminescence, which can be used for detecting fingerprints in crime scenes. The experience was eye-opening for Mittman; she got to directly experience what she had been learning in the classroom about sustainable materials and how she could preserve and use them for modern applications.

    The next year, upon returning to campus, Mittman joined Incredible Foods as a polymeric food science and technology intern. She learned how to create and apply a polymer coating to natural fruit snacks to replicate real berries. “It was fun to see the breadth of material science because I had learned about polymers in my material science classes, but then never thought that it could be applied to making something as fun as fruit snacks,” she says.

    Venturing into yet another new area of materials science, Mittman last year pursued an internship with Phoenix Tailings, which aims to be the world’s first “clean” mining company. In the lab, she helped develop and analyze chemical reactions to physically and chemically extract rare earth metals and oxides from mining waste. She also worked to engineer bright-colored, high-performance pigments using nontoxic chemicals. Mittman enjoyed the opportunity to explore a mineralogically sustainable method for mining, something she hadn’t previously explored as a branch of materials science research.

    “I’m still able to contribute to environmental sustainability and to try to make a greener world, but it doesn’t solely have to be through energy because I’m dealing with dirt and mud,” she says.

    Outside of her academic work, Mittman is involved with the Tech Catholic Community (TCC) on campus. She has held roles as the music director, prayer chair, and social committee chair, organizing and managing social events for over 150 club members. She says the TCC is the most supportive community in her campus life, as she can meet people who have similar interests as her, though are in different majors. “There are a lot of emotional aspects of being at MIT, and there’s a spiritual part that so many students wrestle with. The TCC is where I’ve been able to find so much comfort, support, and encouragement; the closest friends I have are in the Tech Catholic Community,” she says.

    Mittman is also passionate about teaching, which allows her to connect to students and teach them material in new and exciting ways. In the fall of her junior and senior years, she was a teaching assistant for 3.091 (Introduction to Solid State Chemistry), where she taught two recitations of 20 students and offered weekly private tutoring. She enjoyed helping students tackle difficult course material in ways that are enthusiastic and encouraging, as she appreciated receiving the same help in her introductory courses.

    Looking ahead, Mittman plans to work fulltime at Phoenix Tailings as a materials scientist following her graduation. In this way, she feels like she has come full circle: from playing in the mud as a kid to working with it as a materials scientist to extract materials to help build a sustainable future for nearby and international communities.

    “I want to be able to apply what I’m enthusiastic about, which is materials science, by way of mineralogical sustainability, so that it can help mines here in America but also mines in Brazil, Austria, Jamaica — all over the world, because ultimately, I think that will help more people live better lives,” she says. More

  • in

    MIT announces five flagship projects in first-ever Climate Grand Challenges competition

    MIT today announced the five flagship projects selected in its first-ever Climate Grand Challenges competition. These multiyear projects will define a dynamic research agenda focused on unraveling some of the toughest unsolved climate problems and bringing high-impact, science-based solutions to the world on an accelerated basis.

    Representing the most promising concepts to emerge from the two-year competition, the five flagship projects will receive additional funding and resources from MIT and others to develop their ideas and swiftly transform them into practical solutions at scale.

    “Climate Grand Challenges represents a whole-of-MIT drive to develop game-changing advances to confront the escalating climate crisis, in time to make a difference,” says MIT President L. Rafael Reif. “We are inspired by the creativity and boldness of the flagship ideas and by their potential to make a significant contribution to the global climate response. But given the planet-wide scale of the challenge, success depends on partnership. We are eager to work with visionary leaders in every sector to accelerate this impact-oriented research, implement serious solutions at scale, and inspire others to join us in confronting this urgent challenge for humankind.”

    Brief descriptions of the five Climate Grand Challenges flagship projects are provided below.

    Bringing Computation to the Climate Challenge

    This project leverages advances in artificial intelligence, machine learning, and data sciences to improve the accuracy of climate models and make them more useful to a variety of stakeholders — from communities to industry. The team is developing a digital twin of the Earth that harnesses more data than ever before to reduce and quantify uncertainties in climate projections.

    Research leads: Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate; and Noelle Eckley Selin, director of the Technology and Policy Program and professor with a joint appointment in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences

    Center for Electrification and Decarbonization of Industry

    This project seeks to reinvent and electrify the processes and materials behind hard-to-decarbonize industries like steel, cement, ammonia, and ethylene production. A new innovation hub will perform targeted fundamental research and engineering with urgency, pushing the technological envelope on electricity-driven chemical transformations.

    Research leads: Yet-Ming Chiang, the Kyocera Professor of Materials Science and Engineering, and Bilge Yıldız, the Breene M. Kerr Professor in the Department of Nuclear Science and Engineering and professor in the Department of Materials Science and Engineering

    Preparing for a new world of weather and climate extremes

    This project addresses key gaps in knowledge about intensifying extreme events such as floods, hurricanes, and heat waves, and quantifies their long-term risk in a changing climate. The team is developing a scalable climate-change adaptation toolkit to help vulnerable communities and low-carbon energy providers prepare for these extreme weather events.

    Research leads: Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in the Department of Earth, Atmospheric and Planetary Sciences and co-director of the MIT Lorenz Center; Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab; and Paul O’Gorman, professor in the Program in Atmospheres, Oceans, and Climate in the Department of Earth, Atmospheric and Planetary Sciences

    The Climate Resilience Early Warning System

    The CREWSnet project seeks to reinvent climate change adaptation with a novel forecasting system that empowers underserved communities to interpret local climate risk, proactively plan for their futures incorporating resilience strategies, and minimize losses. CREWSnet will initially be demonstrated in southwestern Bangladesh, serving as a model for similarly threatened regions around the world.

    Research leads: John Aldridge, assistant leader of the Humanitarian Assistance and Disaster Relief Systems Group at MIT Lincoln Laboratory, and Elfatih Eltahir, the H.M. King Bhumibol Professor of Hydrology and Climate in the Department of Civil and Environmental Engineering

    Revolutionizing agriculture with low-emissions, resilient crops

    This project works to revolutionize the agricultural sector with climate-resilient crops and fertilizers that have the ability to dramatically reduce greenhouse gas emissions from food production.

    Research lead: Christopher Voigt, the Daniel I.C. Wang Professor in the Department of Biological Engineering

    “As one of the world’s leading institutions of research and innovation, it is incumbent upon MIT to draw on our depth of knowledge, ingenuity, and ambition to tackle the hard climate problems now confronting the world,” says Richard Lester, MIT associate provost for international activities. “Together with collaborators across industry, finance, community, and government, the Climate Grand Challenges teams are looking to develop and implement high-impact, path-breaking climate solutions rapidly and at a grand scale.”

    The initial call for ideas in 2020 yielded nearly 100 letters of interest from almost 400 faculty members and senior researchers, representing 90 percent of MIT departments. After an extensive evaluation, 27 finalist teams received a total of $2.7 million to develop comprehensive research and innovation plans. The projects address four broad research themes:

    To select the winning projects, research plans were reviewed by panels of international experts representing relevant scientific and technical domains as well as experts in processes and policies for innovation and scalability.

    “In response to climate change, the world really needs to do two things quickly: deploy the solutions we already have much more widely, and develop new solutions that are urgently needed to tackle this intensifying threat,” says Maria Zuber, MIT vice president for research. “These five flagship projects exemplify MIT’s strong determination to bring its knowledge and expertise to bear in generating new ideas and solutions that will help solve the climate problem.”

    “The Climate Grand Challenges flagship projects set a new standard for inclusive climate solutions that can be adapted and implemented across the globe,” says MIT Chancellor Melissa Nobles. “This competition propels the entire MIT research community — faculty, students, postdocs, and staff — to act with urgency around a worsening climate crisis, and I look forward to seeing the difference these projects can make.”

    “MIT’s efforts on climate research amid the climate crisis was a primary reason that I chose to attend MIT, and remains a reason that I view the Institute favorably. MIT has a clear opportunity to be a thought leader in the climate space in our own MIT way, which is why CGC fits in so well,” says senior Megan Xu, who served on the Climate Grand Challenges student committee and is studying ways to make the food system more sustainable.

    The Climate Grand Challenges competition is a key initiative of “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021. Fast Forward outlines MIT’s comprehensive plan for helping the world address the climate crisis. It consists of five broad areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts. More

  • in

    Toward batteries that pack twice as much energy per pound

    In the endless quest to pack more energy into batteries without increasing their weight or volume, one especially promising technology is the solid-state battery. In these batteries, the usual liquid electrolyte that carries charges back and forth between the electrodes is replaced with a solid electrolyte layer. Such batteries could potentially not only deliver twice as much energy for their size, they also could virtually eliminate the fire hazard associated with today’s lithium-ion batteries.

    But one thing has held back solid-state batteries: Instabilities at the boundary between the solid electrolyte layer and the two electrodes on either side can dramatically shorten the lifetime of such batteries. Some studies have used special coatings to improve the bonding between the layers, but this adds the expense of extra coating steps in the fabrication process. Now, a team of researchers at MIT and Brookhaven National Laboratory have come up with a way of achieving results that equal or surpass the durability of the coated surfaces, but with no need for any coatings.

    The new method simply requires eliminating any carbon dioxide present during a critical manufacturing step, called sintering, where the battery materials are heated to create bonding between the cathode and electrolyte layers, which are made of ceramic compounds. Even though the amount of carbon dioxide present is vanishingly small in air, measured in parts per million, its effects turn out to be dramatic and detrimental. Carrying out the sintering step in pure oxygen creates bonds that match the performance of the best coated surfaces, without that extra cost of the coating, the researchers say.

    The findings are reported in the journal Advanced Energy Materials, in a paper by MIT doctoral student Younggyu Kim, professor of nuclear science and engineering and of materials science and engineering Bilge Yildiz, and Iradikanari Waluyo and Adrian Hunt at Brookhaven National Laboratory.

    “Solid-state batteries have been desirable for different reasons for a long time,” Yildiz says. “The key motivating points for solid batteries are they are safer and have higher energy density,” but they have been held back from large scale commercialization by two factors, she says: the lower conductivity of the solid electrolyte, and the interface instability issues.

    The conductivity issue has been effectively tackled, and reasonably high-conductivity materials have already been demonstrated, according to Yildiz. But overcoming the instabilities that arise at the interface has been far more challenging. These instabilities can occur during both the manufacturing and the electrochemical operation of such batteries, but for now the researchers have focused on the manufacturing, and specifically the sintering process.

    Sintering is needed because if the ceramic layers are simply pressed onto each other, the contact between them is far from ideal, there are far too many gaps, and the electrical resistance across the interface is high. Sintering, which is usually done at temperatures of 1,000 degrees Celsius or above for ceramic materials, causes atoms from each material to migrate into the other to form bonds. The team’s experiments showed that at temperatures anywhere above a few hundred degrees, detrimental reactions take place that increase the resistance at the interface — but only if carbon dioxide is present, even in tiny amounts. They demonstrated that avoiding carbon dioxide, and in particular maintaining a pure oxygen atmosphere during sintering, could create very good bonding at temperatures up to 700 degrees, with none of the detrimental compounds formed.

    The performance of the cathode-electrolyte interface made using this method, Yildiz says, was “comparable to the best interface resistances we have seen in the literature,” but those were all achieved using the extra step of applying coatings. “We are finding that you can avoid that additional fabrication step, which is typically expensive.”

    The potential gains in energy density that solid-state batteries provide comes from the fact that they enable the use of pure lithium metal as one of the electrodes, which is much lighter than the currently used electrodes made of lithium-infused graphite.

    The team is now studying the next part of the performance of such batteries, which is how these bonds hold up over the long run during battery cycling. Meanwhile, the new findings could potentially be applied rapidly to battery production, she says. “What we are proposing is a relatively simple process in the fabrication of the cells. It doesn’t add much energy penalty to the fabrication. So, we believe that it can be adopted relatively easily into the fabrication process,” and the added costs, they have calculated, should be negligible.

    Large companies such as Toyota are already at work commercializing early versions of solid-state lithium-ion batteries, and these new findings could quickly help such companies improve the economics and durability of the technology.

    The research was supported by the U.S. Army Research Office through MIT’s Institute for Soldier Nanotechnologies. The team used facilities supported by the National Science Foundation and facilities at Brookhaven National Laboratory supported by the Department of Energy. More

  • in

    Nurturing human communities and natural ecosystems

    When she was in 7th grade, Heidi Li and the five other members of the Oyster Gardening Club cultivated hundreds of oysters to help repopulate the Chesapeake Bay. On the day they released the oysters into the bay, the event attracted TV journalists and local officials, including the governor. The attention opened the young Li’s eyes to the ways that a seemingly small effort in her local community could have a real-world impact.

    “I got to see firsthand how we can make change at a grassroots level and how that impacts where we are,” she says.

    Growing up in Howard County, Maryland, Li was constantly surrounded by nature. Her family made frequent trips to the Chesapeake Bay, as it reminded them of her parent’s home in Shandong, China. Li worked to bridge the cultural gap between parents, who grew up in China, and their children, who grew up in the U.S., and attended Chinese school every Sunday for 12 years. These experiences instilled in her a community-oriented mindset, which Li brought with her to MIT, where she now majors in materials science and engineering.

    During her first year, Li pursued a microbiology research project through the Undergraduate Research Opportunities Program (UROP) in the Department of Civil and Environmental Engineering. She studied microbes in aquatic environments, analyzing how the cleanliness of water impacted immunity and behavioral changes of the marine bacteria.

    The experience led her to consider the ways environmental policy affected sustainability efforts. She began applying the problem to energy, asking herself questions such as, “How can you take this specific economic principle and apply it to energy? What has energy policy looked like in the past and how can we tailor that to apply to our current energy system?”

    To explore the intersection of policy and energy, Li participated in the Roosevelt Project, through the Center of Energy and Environmental Policy Research, during the summer after her junior year. The project used case studies targeting specific communities in vulnerable areas to propose methods for a more sustainable future. Li focused on Pittsburgh, Pennsylvania, evaluating the efficiency of an energy transition from natural gas and fossil fuels to carbon-capture, which would mean redistributing the carbon dioxide produced by the coal industry. After traveling to Pittsburgh and interviewing stakeholders in the area, Li watched as local community leaders created physical places for citizens to share their ideas and opinions on the energy transition

    “I watched community leaders create a safe space for people from the surrounding town to share their ideas for entrepreneurship. I saw how important community is and how to create change at a grassroots level,” she says.

    In the summer of 2021, Li pursued an internship through the energy consulting firm Wood Mackenzie, where she looked at technologies that could potentially help with the energy transition from fossil fuels to renewable energy. Her job was to make sure the technology could be implemented efficiently and cost-effectively, optimizing the resources available to the surrounding area. The project allowed Li to engage with industry-based efforts to chart and analyze the technological advancements for various decarbonization scenarios. She hopes to continue looking at both the local, community-based, and external, industry-based, inputs on how economic policy would affect stakeholders.

    On campus, Li is the current president of the Sustainable Energy Alliance (SEA), where she aims to make students more conscious about climate change and their impact on the environment. During summer of her sophomore year, Li chaired a sustainability hackathon for over 200 high school students, where she designed and led the “Protecting Climate Refugees” and “Tackling Environmental Injustice” challenges to inspire students to think about humanitarian efforts for protecting frontline communities.

    “The whole goal of this is to empower students to think about solutions for themselves. Empowering students is really important to show them they can make change and inspire hope in themselves and the people around them,” she says.

    Li also hosted and produced “Open SEAcrets,” a podcast designed to engage MIT students with topics surrounding energy sustainability and provide them with the opportunity to share their opinions on the subject. She sees the podcast as a platform to raise awareness about energy, climate change, and environmental policy, while also inspiring a sense of community with listeners.

    When she is not in the classroom or the lab, Li relaxes by playing volleyball. She joined the Volleyball Club during her first year at MIT, though she has been playing since she was 12. The sport allows her to not only relieve stress, but also have conversations with both undergrads and graduate students, who bring different their backgrounds, interests, and experiences to conversations. The sport has also taught Li about teamwork, trust, and the importance of community in ways that her other experience doesn’t.

    Looking ahead, Li is currently working on a UROP project, called Climate Action Through Education (CATE), that designs climate change curriculum for K-12 grades and aims to show how climate change and energy are integral to peoples’ daily lives. Seeing the energy transition as an interdisciplinary problem, she wants to educate students about the problems of climate change and sustainability using perspectives from math, science, history, and psychology to name a few areas.

    But above all, Li wants to empower younger generations to develop solution-minded approaches to environmentalism. She hopes to give local communities a voice in policy implementation, with the end goal of a more sustainable future for all.

    “Finding a community you really thrive in will allow you to push yourself and be the best version of yourself you can be. I want to take this mindset and create spaces for people and establish and instill this sense of community,” she says. More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Selective separation could help alleviate critical metals shortage

    New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries, by making it easier to separate these rare metals from mining ores and recycled materials.

    Selective adjustments within a chemical process called sulfidation allowed professor of metallurgy Antoine Allanore and his graduate student Caspar Stinn to successfully target and separate rare metals, such as the cobalt in a lithium-ion battery, from mixed-metal materials.

    As they report in the journal Nature, their processing techniques allow the metals to remain in solid form and be separated without dissolving the material. This avoids traditional but costly liquid separation methods that require significant energy. The researchers developed processing conditions for 56 elements and tested these conditions on 15 elements.

    Their sulfidation approach, they write in the paper, could reduce the capital costs of metal separation between 65 and 95 percent from mixed-metal oxides. Their selective processing could also reduce greenhouse gas emissions by 60 to 90 percent compared to traditional liquid-based separation.

    “We were excited to find replacements for processes that had really high levels of water usage and greenhouse gas emissions, such as lithium-ion battery recycling, rare-earth magnet recycling, and rare-earth separation,” says Stinn. “Those are processes that make materials for sustainability applications, but the processes themselves are very unsustainable.”

    The findings offer one way to alleviate a growing demand for minor metals like cobalt, lithium, and rare earth elements that are used in “clean” energy products like electric cars, solar cells, and electricity-generating windmills. According to a 2021 report by the International Energy Agency, the average amount of minerals needed for a new unit of power generation capacity has risen by 50 percent since 2010, as renewable energy technologies using these metals expand their reach.

    Opportunity for selectivity

    For more than a decade, the Allanore group has been studying the use of sulfide materials in developing new electrochemical routes for metal production. Sulfides are common materials, but the MIT scientists are experimenting with them under extreme conditions like very high temperatures — from 800 to 3,000 degrees Fahrenheit — that are used in manufacturing plants but not in a typical university lab.

    “We are looking at very well-established materials in conditions that are uncommon compared to what has been done before,” Allanore explains, “and that is why we are finding new applications or new realities.”

    In the process of synthetizing high-temperature sulfide materials to support electrochemical production, Stinn says, “we learned we could be very selective and very controlled about what products we made. And it was with that understanding that we realized, ‘OK, maybe there’s an opportunity for selectivity in separation here.’”

    The chemical reaction exploited by the researchers reacts a material containing a mix of metal oxides to form new metal-sulfur compounds or sulfides. By altering factors like temperature, gas pressure, and the addition of carbon in the reaction process, Stinn and Allanore found that they could selectively create a variety of sulfide solids that can be physically separated by a variety of methods, including crushing the material and sorting different-sized sulfides or using magnets to separate different sulfides from one another.

    Current methods of rare metal separation rely on large quantities of energy, water, acids, and organic solvents which have costly environmental impacts, says Stinn. “We are trying to use materials that are abundant, economical, and readily available for sustainable materials separation, and we have expanded that domain to now include sulfur and sulfides.”

    Stinn and Allanore used selective sulfidation to separate out economically important metals like cobalt in recycled lithium-ion batteries. They also used their techniques to separate dysprosium — a rare-earth element used in applications ranging from data storage devices to optoelectronics — from rare-earth-boron magnets, or from the typical mixture of oxides available from mining minerals such as bastnaesite.

    Leveraging existing technology

    Metals like cobalt and rare earths are only found in small amounts in mined materials, so industries must process large volumes of material to retrieve or recycle enough of these metals to be economically viable, Allanore explains. “It’s quite clear that these processes are not efficient. Most of the emissions come from the lack of selectivity and the low concentration at which they operate.”

    By eliminating the need for liquid separation and the extra steps and materials it requires to dissolve and then reprecipitate individual elements, the MIT researchers’ process significantly reduces the costs incurred and emissions produced during separation.

    “One of the nice things about separating materials using sulfidation is that a lot of existing technology and process infrastructure can be leveraged,” Stinn says. “It’s new conditions and new chemistries in established reactor styles and equipment.”

    The next step is to show that the process can work for large amounts of raw material — separating out 16 elements from rare-earth mining streams, for example. “Now we have shown that we can handle three or four or five of them together, but we have not yet processed an actual stream from an existing mine at a scale to match what’s required for deployment,” Allanore says.

    Stinn and colleagues in the lab have built a reactor that can process about 10 kilograms of raw material per day, and the researchers are starting conversations with several corporations about the possibilities.

    “We are discussing what it would take to demonstrate the performance of this approach with existing mineral and recycling streams,” Allanore says.

    This research was supported by the U.S. Department of Energy and the U.S. National Science Foundation. More

  • in

    Q&A: More-sustainable concrete with machine learning

    As a building material, concrete withstands the test of time. Its use dates back to early civilizations, and today it is the most popular composite choice in the world. However, it’s not without its faults. Production of its key ingredient, cement, contributes 8-9 percent of the global anthropogenic CO2 emissions and 2-3 percent of energy consumption, which is only projected to increase in the coming years. With aging United States infrastructure, the federal government recently passed a milestone bill to revitalize and upgrade it, along with a push to reduce greenhouse gas emissions where possible, putting concrete in the crosshairs for modernization, too.

    Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in the MIT Department of Materials Science and Engineering, and Jie Chen, MIT-IBM Watson AI Lab research scientist and manager, think artificial intelligence can help meet this need by designing and formulating new, more sustainable concrete mixtures, with lower costs and carbon dioxide emissions, while improving material performance and reusing manufacturing byproducts in the material itself. Olivetti’s research improves environmental and economic sustainability of materials, and Chen develops and optimizes machine learning and computational techniques, which he can apply to materials reformulation. Olivetti and Chen, along with their collaborators, have recently teamed up for an MIT-IBM Watson AI Lab project to make concrete more sustainable for the benefit of society, the climate, and the economy.

    Q: What applications does concrete have, and what properties make it a preferred building material?

    Olivetti: Concrete is the dominant building material globally with an annual consumption of 30 billion metric tons. That is over 20 times the next most produced material, steel, and the scale of its use leads to considerable environmental impact, approximately 5-8 percent of global greenhouse gas (GHG) emissions. It can be made locally, has a broad range of structural applications, and is cost-effective. Concrete is a mixture of fine and coarse aggregate, water, cement binder (the glue), and other additives.

    Q: Why isn’t it sustainable, and what research problems are you trying to tackle with this project?

    Olivetti: The community is working on several ways to reduce the impact of this material, including alternative fuels use for heating the cement mixture, increasing energy and materials efficiency and carbon sequestration at production facilities, but one important opportunity is to develop an alternative to the cement binder.

    While cement is 10 percent of the concrete mass, it accounts for 80 percent of the GHG footprint. This impact is derived from the fuel burned to heat and run the chemical reaction required in manufacturing, but also the chemical reaction itself releases CO2 from the calcination of limestone. Therefore, partially replacing the input ingredients to cement (traditionally ordinary Portland cement or OPC) with alternative materials from waste and byproducts can reduce the GHG footprint. But use of these alternatives is not inherently more sustainable because wastes might have to travel long distances, which adds to fuel emissions and cost, or might require pretreatment processes. The optimal way to make use of these alternate materials will be situation-dependent. But because of the vast scale, we also need solutions that account for the huge volumes of concrete needed. This project is trying to develop novel concrete mixtures that will decrease the GHG impact of the cement and concrete, moving away from the trial-and-error processes towards those that are more predictive.

    Chen: If we want to fight climate change and make our environment better, are there alternative ingredients or a reformulation we could use so that less greenhouse gas is emitted? We hope that through this project using machine learning we’ll be able to find a good answer.

    Q: Why is this problem important to address now, at this point in history?

    Olivetti: There is urgent need to address greenhouse gas emissions as aggressively as possible, and the road to doing so isn’t necessarily straightforward for all areas of industry. For transportation and electricity generation, there are paths that have been identified to decarbonize those sectors. We need to move much more aggressively to achieve those in the time needed; further, the technological approaches to achieve that are more clear. However, for tough-to-decarbonize sectors, such as industrial materials production, the pathways to decarbonization are not as mapped out.

    Q: How are you planning to address this problem to produce better concrete?

    Olivetti: The goal is to predict mixtures that will both meet performance criteria, such as strength and durability, with those that also balance economic and environmental impact. A key to this is to use industrial wastes in blended cements and concretes. To do this, we need to understand the glass and mineral reactivity of constituent materials. This reactivity not only determines the limit of the possible use in cement systems but also controls concrete processing, and the development of strength and pore structure, which ultimately control concrete durability and life-cycle CO2 emissions.

    Chen: We investigate using waste materials to replace part of the cement component. This is something that we’ve hypothesized would be more sustainable and economic — actually waste materials are common, and they cost less. Because of the reduction in the use of cement, the final concrete product would be responsible for much less carbon dioxide production. Figuring out the right concrete mixture proportion that makes endurable concretes while achieving other goals is a very challenging problem. Machine learning is giving us an opportunity to explore the advancement of predictive modeling, uncertainty quantification, and optimization to solve the issue. What we are doing is exploring options using deep learning as well as multi-objective optimization techniques to find an answer. These efforts are now more feasible to carry out, and they will produce results with reliability estimates that we need to understand what makes a good concrete.

    Q: What kinds of AI and computational techniques are you employing for this?

    Olivetti: We use AI techniques to collect data on individual concrete ingredients, mix proportions, and concrete performance from the literature through natural language processing. We also add data obtained from industry and/or high throughput atomistic modeling and experiments to optimize the design of concrete mixtures. Then we use this information to develop insight into the reactivity of possible waste and byproduct materials as alternatives to cement materials for low-CO2 concrete. By incorporating generic information on concrete ingredients, the resulting concrete performance predictors are expected to be more reliable and transformative than existing AI models.

    Chen: The final objective is to figure out what constituents, and how much of each, to put into the recipe for producing the concrete that optimizes the various factors: strength, cost, environmental impact, performance, etc. For each of the objectives, we need certain models: We need a model to predict the performance of the concrete (like, how long does it last and how much weight does it sustain?), a model to estimate the cost, and a model to estimate how much carbon dioxide is generated. We will need to build these models by using data from literature, from industry, and from lab experiments.

    We are exploring Gaussian process models to predict the concrete strength, going forward into days and weeks. This model can give us an uncertainty estimate of the prediction as well. Such a model needs specification of parameters, for which we will use another model to calculate. At the same time, we also explore neural network models because we can inject domain knowledge from human experience into them. Some models are as simple as multi-layer perceptions, while some are more complex, like graph neural networks. The goal here is that we want to have a model that is not only accurate but also robust — the input data is noisy, and the model must embrace the noise, so that its prediction is still accurate and reliable for the multi-objective optimization.

    Once we have built models that we are confident with, we will inject their predictions and uncertainty estimates into the optimization of multiple objectives, under constraints and under uncertainties.

    Q: How do you balance cost-benefit trade-offs?

    Chen: The multiple objectives we consider are not necessarily consistent, and sometimes they are at odds with each other. The goal is to identify scenarios where the values for our objectives cannot be further pushed simultaneously without compromising one or a few. For example, if you want to further reduce the cost, you probably have to suffer the performance or suffer the environmental impact. Eventually, we will give the results to policymakers and they will look into the results and weigh the options. For example, they may be able to tolerate a slightly higher cost under a significant reduction in greenhouse gas. Alternatively, if the cost varies little but the concrete performance changes drastically, say, doubles or triples, then this is definitely a favorable outcome.

    Q: What kinds of challenges do you face in this work?

    Chen: The data we get either from industry or from literature are very noisy; the concrete measurements can vary a lot, depending on where and when they are taken. There are also substantial missing data when we integrate them from different sources, so, we need to spend a lot of effort to organize and make the data usable for building and training machine learning models. We also explore imputation techniques that substitute missing features, as well as models that tolerate missing features, in our predictive modeling and uncertainty estimate.

    Q: What do you hope to achieve through this work?

    Chen: In the end, we are suggesting either one or a few concrete recipes, or a continuum of recipes, to manufacturers and policymakers. We hope that this will provide invaluable information for both the construction industry and for the effort of protecting our beloved Earth.

    Olivetti: We’d like to develop a robust way to design cements that make use of waste materials to lower their CO2 footprint. Nobody is trying to make waste, so we can’t rely on one stream as a feedstock if we want this to be massively scalable. We have to be flexible and robust to shift with feedstocks changes, and for that we need improved understanding. Our approach to develop local, dynamic, and flexible alternatives is to learn what makes these wastes reactive, so we know how to optimize their use and do so as broadly as possible. We do that through predictive model development through software we have developed in my group to automatically extract data from literature on over 5 million texts and patents on various topics. We link this to the creative capabilities of our IBM collaborators to design methods that predict the final impact of new cements. If we are successful, we can lower the emissions of this ubiquitous material and play our part in achieving carbon emissions mitigation goals.

    Other researchers involved with this project include Stefanie Jegelka, the X-Window Consortium Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science; Richard Goodwin, IBM principal researcher; Soumya Ghosh, MIT-IBM Watson AI Lab research staff member; and Kristen Severson, former research staff member. Collaborators included Nghia Hoang, former research staff member with MIT-IBM Watson AI Lab and IBM Research; and Jeremy Gregory, research scientist in the MIT Department of Civil and Environmental Engineering and executive director of the MIT Concrete Sustainability Hub.

    This research is supported by the MIT-IBM Watson AI Lab. More