More stories

  • in

    On batteries, teaching, and world peace

    Over his long career as an electrochemist and professor, Donald Sadoway has earned an impressive variety of honors, from being named one of Time magazine’s 100 most influential people in 2012 to appearing on “The Colbert Report,” where he talked about “renewable energy and world peace,” according to Comedy Central.

    What does he personally consider to be his top achievements?

    “That’s easy,” he says immediately. “For teaching, it’s 3.091,” the MIT course on solid-state chemistry he led for some 18 years. An MIT core requirement, 3.091 is also one of the largest classes at the Institute. In 2003 it was the largest, with 630 students. Sadoway, who retires this year after 45 years in the Department of Materials Science and Engineering, estimates that over the years he’s taught the course to some 10,000 undergraduates.

    A passion for teaching

    Along the way he turned the class into an MIT favorite, complete with music, art, and literature. “I brought in all that enrichment because I knew that 95 percent of the students in that room weren’t going to major in anything chemical and this might be the last class they’d take in the subject. But it’s a requirement. So they’re 18 years old, they’re very smart, and many of them are very bored. You have to find a hook [to reach them]. And I did.”

    In 1995, Sadoway was named a Margaret MacVicar Faculty Fellow, an honor that recognizes outstanding classroom teaching at the Institute. Among the communications in support of his nomination:

    “His contributions are enormous and the class is in rapt attention from beginning to end. His lectures are highly articulate yet animated and he has uncommon grace and style. I was awed by his ability to introduce playful and creative elements into a core lecture…”

    Bill Gates would agree. In the early 2000s Sadoway’s lectures were shared with the world through OpenCourseWare, the web-based publication of MIT course materials. Gates was so inspired by the lectures that he asked to meet with Sadoway to learn more about his research. (Sadoway initially ignored Gates’ email because he thought his account had been hacked by MIT pranksters.)

    Research breakthroughs

    Teaching is not Sadoway’s only passion. He’s also proud of his accomplishments in electrochemistry. The discipline that involves electron transfer reactions is key to everything from batteries to the primary extraction of metals like aluminum and magnesium. “It’s quite wide-ranging,” says the John F. Elliott Professor Emeritus of Materials Chemistry.

    Sadoway’s contributions include two battery breakthroughs. First came the liquid metal battery, which could enable the large-scale storage of renewable energy. “That represents a huge step forward in the transition to green energy,” said António Campinos, president of the European Patent Office, earlier this year when Sadoway won the 2022 European Inventor Award for the invention in the category for Non-European Patent Office Countries.

    On “The Colbert Report,” Sadoway alluded to that work when he told Stephen Colbert that electrochemistry is the key to world peace. Why? Because it could lead to a battery capable of storing energy from the sun when the sun doesn’t shine and otherwise make renewables an important part of the clean energy mix. And that in turn could “plummet the price of petroleum and depose dictators all over the world without one shot being fired,” he recently recalled.

    The liquid metal battery is the focus of Ambri, one of six companies based on Sadoway’s inventions. Bill Gates was the first funder of the company, which formed in 2010 and aims to install its first battery soon. That battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Then, in August of this year, Sadoway and colleagues published a paper in Nature about “one of the first new battery chemistries in 30 years,” Sadoway says. “I wanted to invent something that was better, much better,” than the expensive lithium-ion batteries used in, for example, today’s electric cars.

    That battery is the focus of Avanti, one of three Sadoway companies formed just last year. The other two are Pure Lithium, to commercialize his inventions related to that element, and Sadoway Labs. The latter, a nonprofit, is essentially “a space to try radical innovations. We’re gonna start working on wild ideas.”

    Another focus of Sadoway’s research: green steel. Steelmaking produces huge amounts of greenhouse gases. Enter Boston Metal, another Sadoway company. This one is developing a new approach to producing steel based on research begun some 25 years ago. Unlike the current technology for producing steel, the Boston Metal approach — molten oxide electrolysis — does not use the element at the root of steel’s problems: carbon. The principal byproduct of the new system? Oxygen.

    In 2012, Sadoway gave a TED talk to 2,000 people on the liquid metal battery. He believes that that talk, which has now been seen by almost 2.5 million people, led to the wider publicity of his work — and science overall — on “The Colbert Report” and elsewhere. “The moral here is that if you step out of your comfort zone, you might be surprised at what can happen,” he concludes.

    Colleagues’ reflections

    “I met Don in 2006 when I was working for the iron and steel industry in Europe on ways to reduce greenhouse gas emissions from the production of those materials,” says Antoine Allanore, professor of metallurgy, Department of Materials Science and Engineering. “He was the same Don Sadoway that you see in recordings of his lectures: very elegant, very charismatic, and passionate about the technical solutions and underlying science of the process we were all investigating; electrolysis. A few years later, when I decided to pursue an academic career, I contacted Don and became a postdoctoral associate in his lab. That ultimately led to my becoming an MIT professor. People don’t believe me, but before I came to MIT the only thing I knew about the Institute was that Noam Chomsky was there … and Don Sadoway. And I felt, that’s a great place to be. And I stayed because I saw the exceptional things that can be accomplished at MIT and Don is the perfect example of that.”

    “I had the joy of meeting Don when I first arrived on the MIT campus in 1994,” recalls Felice Frankel, research scientist in the MIT departments of Chemical Engineering and Mechanical Engineering. “I didn’t have to talk him into the idea that researchers needed to take their images and graphics more seriously.  He got it — that it wasn’t just about pretty pictures. He was an important part of our five-year National Science Foundation project — Picturing to Learn — to bring that concept into the classroom. How lucky that was for me!”

    “Don has been a friend and mentor since we met in 1995 when I was an MIT senior,” says Luis Ortiz, co-founder and chief executive officer, Avanti Battery Co. “One story that is emblematic of Don’s insistence on excellence is from when he and I met with Bill Gates about the challenges in addressing climate change and how batteries could be the linchpin in solving them. I suggested that we create our presentation in PowerPoint [Microsoft software]. Don balked. He insisted that we present using Keynote on his MacBook Air, because ‘it looks so much better.’ I was incredulous that he wanted to walk into that venue exclusively using Apple products. Of course, he won the argument, but not without my admonition that there had better not be even a blip of an issue. In the meeting room, Microsoft’s former chief technology officer asked Don if he needed anything to hook up to the screen, ‘we have all those dongles.’ Don declined, but gave me that knowing look and whispered, ‘You see, they know, too.’ I ate my crow and we had a great long conversation without any issues.”

    “I remember when I first started working with Don on the liquid metal battery project at MIT, after I had chosen it as the topic for my master’s of engineering thesis,” adds David Bradwell, co-founder and chief technology officer, Ambri. “I was a wide-eyed graduate student, sitting in his office, amongst his art deco decorations, unique furniture, and historical and stylistic infographics, and from our first meeting, I could see Don’s passion for coming up with new and creative, yet practical scientific ideas, and for working on hard problems, in service of society. Don’s approaches always appear to be unconventional — wanting to stand out in a crowd, take the path less trodden, both based on his ideas, and his sense of style. It’s been an amazing journey working with him over the past decade-and-a-half, and I remain excited to see what other new, unconventional ideas, he can bring to this world.” More

  • in

    New materials could enable longer-lasting implantable batteries

    For the last few decades, battery research has largely focused on rechargeable lithium-ion batteries, which are used in everything from electric cars to portable electronics and have improved dramatically in terms of affordability and capacity. But nonrechargeable batteries have seen little improvement during that time, despite their crucial role in many important uses such as implantable medical devices like pacemakers.

    Now, researchers at MIT have come up with a way to improve the energy density of these nonrechargeable, or “primary,” batteries. They say it could enable up to a 50 percent increase in useful lifetime, or a corresponding decrease in size and weight for a given amount of power or energy capacity, while also improving safety, with little or no increase in cost.

    The new findings, which involve substituting the conventionally inactive battery electrolyte with a material that is active for energy delivery, are reported today in the journal Proceedings of the National Academy of Sciences, in a paper by MIT Kavanaugh Postdoctoral Fellow Haining Gao, graduate student Alejandro Sevilla, associate professor of mechanical engineering Betar Gallant, and four others at MIT and Caltech.

    Replacing the battery in a pacemaker or other medical implant requires a surgical procedure, so any increase in the longevity of their batteries could have a significant impact on the patient’s quality of life, Gallant says. Primary batteries are used for such essential applications because they can provide about three times as much energy for a given size and weight as rechargeable batteries.

    That difference in capacity, Gao says, makes primary batteries “critical for applications where charging is not possible or is impractical.” The new materials work at human body temperature, so would be suitable for medical implants. In addition to implantable devices, with further development to make the batteries operate efficiently at cooler temperatures, applications could also include sensors in tracking devices for shipments, for example to ensure that temperature and humidity requirements for food or drug shipments are properly maintained throughout the shipping process. Or, they might be used in remotely operated aerial or underwater vehicles that need to remain ready for deployment over long periods.

    Pacemaker batteries typically last from five to 10 years, and even less if they require high-voltage functions such as defibrillation. Yet for such batteries, Gao says, the technology is considered mature, and “there haven’t been any major innovations in fundamental cell chemistries in the past 40 years.”

    The key to the team’s innovation is a new kind of electrolyte — the material that lies between the two electrical poles of the battery, the cathode and the anode, and allows charge carriers to pass through from one side to the other. Using a new liquid fluorinated compound, the team found that they could combine some of the functions of the cathode and the electrolyte in one compound, called a catholyte. This allows for saving much of the weight of typical primary batteries, Gao says.

    While there are other materials besides this new compound that could theoretically function in a similar catholyte role in a high-capacity battery, Gallant explains, those materials have lower inherent voltages that do not match those of the remainder of the material in a conventional pacemaker battery, a type known as CFx. Because the overall output from the battery can’t be more than that of the lesser of the two electrode materials,  the extra capacity would go to waste because of the voltage mismatch. But with the new material, “one of the key merits of our fluorinated liquids is that their voltage aligns very well with that of CFx,” Gallant says.

    In a conventional  CFx battery, the liquid electrolyte is essential because it allows charged particles to pass through from one electrode to the other. But “those electrolytes are actually chemically inactive, so they’re basically dead weight,” Gao says. This means about 50 percent of the battery’s key components, mainly the electrolyte, is inactive material. But in the new design with the fluorinated catholyte material, the amount of dead weight can be reduced to about 20 percent, she says.

    The new cells also provide safety improvements over other kinds of proposed chemistries that would use toxic and corrosive catholyte materials, which their formula does not, Gallant says. And preliminary tests have demonstrated a stable shelf life over more than a year, an important characteristic for primary batteries, she says.

    So far, the team has not yet experimentally achieved the full 50 percent improvement in energy density predicted by their analysis. They have demonstrated a 20 percent improvement, which in itself would be an important gain for some applications, Gallant says. The design of the cell itself has not yet been fully optimized, but the researchers can project the cell performance based on the performance of the active material itself. “We can see the projected cell-level performance when it’s scaled up can reach around 50 percent higher than the CFx cell,” she says. Achieving that level experimentally is the team’s next goal.

    Sevilla, a doctoral student in the mechanical engineering department, will be focusing on that work in the coming year. “I was brought into this project to try to understand some of the limitations of why we haven’t been able to attain the full energy density possible,” he says. “My role has been trying to fill in the gaps in terms of understanding the underlying reaction.”

    One big advantage of the new material, Gao says, is that it can easily be integrated into existing battery manufacturing processes, as a simple substitution of one material for another. Preliminary discussions with manufacturers confirm this potentially easy substitution, Gao says. The basic starting material, used for other purposes, has already been scaled up for production, she says, and its price is comparable to that of the materials currently used in CFx batteries. The cost of batteries using the new material is likely to be comparable to the existing batteries as well, she says. The team has already applied for a patent on the catholyte, and they expect that the medical applications are likely to be the first to be commercialized, perhaps with a full-scale prototype ready for testing in real devices within about a year.

    Further down the road, other applications could likely take advantage of the new materials as well, such as smart water or gas meters that can be read out remotely, or devices like EZPass transponders, increasing their usable lifetime, the researchers say. Power for drone aircraft or undersea vehicles would require higher power and so may take longer to be developed. Other uses could include batteries for equipment used at remote sites, such as drilling rigs for oil and gas, including devices sent down into the wells to monitor conditions.

    The team also included Gustavo Hobold, Aaron Melemed, and Rui Guo at MIT and Simon Jones at Caltech. The work was supported by MIT Lincoln Laboratory and the Army Research Office. More

  • in

    A lasting — and valuable — legacy

    Betar Gallant, MIT associate professor and Class of 1922 Career Development Chair in Mechanical Engineering, grew up in a curious, independently minded family. Her mother had multiple jobs over the years, including in urban planning and in the geospatial field. Her father, although formally trained in English, read textbooks of all kinds from cover to cover, taught himself numerous technical fields including engineering, and worked successfully in them. When Gallant was very young, she and her father did science experiments in the basement.

    It wasn’t until she was in her teenage years, though, that she says she got drawn into science. Her father, who had fallen ill five years before, died when Gallant was 16, and while grieving, “when I was missing him the most,” she started to look at what had captivated her father.

    “I started to take a deeper interest in the things he had spent his life working on as a way to feel closer to him in his absence,” Gallant says. “I spent a few long months one summer looking through some of the things he had worked on, and found myself reading physics textbooks. That was enough, and I was hooked.”

    The love for independently finding and understanding solutions, that she had apparently inherited from her parents, eventually took her to the professional love of her life: electrochemistry.

    As an undergraduate at MIT, Gallant did an Undergraduate Research Opportunities Program project with Professor Yang Shao-Horn’s research group that went from her sophomore year through her senior thesis. This was Gallant’s first official exposure to electrochemistry.

    “When I met Yang, she showed me very quickly how challenging and enriching electrochemistry can be, and there was real conviction and excitement in how she and her group members talked about research,” Gallant says. “It was totally eye-opening, and I’m fortunate that she was a (relatively rare) electrochemist in a mechanical engineering department, or else I likely would not have been able to go down that road.”

    Play video

    Gallant earned three degrees at MIT (’08, SM ’10, and PhD ’13). Before joining the MIT faculty in 2016, she was a Kavli Nanoscience Institute Prize Postdoctoral Fellow at Caltech in the Division of Chemistry and Chemical Engineering.

    Her passion for electrochemistry is enormous. “Electrons are just dazzling — they power so much of our everyday world, and are the key to a renewable future,” she says, explaining that despite electrons’ amazing potential, isolated electrons cannot be stored and produced on demand, because “nature doesn’t allow excessive amounts of charge imbalances to accumulate.”

    Electrons can, however, be stored on molecules, in bonds and in metal ions or nonmetal centers that are able to lose and gain electrons — as long as positive charge transfers occur to accommodate the electrons.

    “Here’s where chemistry rears its head,” Gallant says. “What types of molecules or materials can behave in this way? How do we store as much charge as possible while making the weight and volume as low as possible?”

    Gallant points out that early battery developers using lithium and ions built a technology that “has arguably shaped our modern world more than any other.

    “If you look at some early papers, the concepts of how a lithium-ion battery or a lithium metal anode worked were sketched out by hand — they had been deduced to be true, before the field even had the tools to prove all the mechanisms were actually occurring — yet even now, those ideas are still turning out to be right!”

    Gallant says, “that’s because if you truly understand the basic principles of electrochemistry, you can start to intuit how systems will behave. Once you can do that, you can really begin to engineer better materials and devices.”

    Truly her father’s daughter, Gallant’s emphasis is on independently finding solutions.

    “Ultimately, it’s a race to have the best mental models,” she says. “A great lab and lots of funding and personnel to run it are very nice, but the most valuable tools in the toolbox are solid mental models and a way of thinking about electrochemistry, which is actually very personalized depending on the researcher.”

    She says one project with immediate impact that’s coming out of her Gallant Energy and Carbon Conversion Lab relates to primary (non-rechargeable) battery work that she and her team are working to commercialize. It involves injecting new electrochemically active electrolytes into leading high-energy batteries as they’re being assembled. Replacing a conventional electrolyte with the new chemistry decreases the normally inactive weight of the battery and boosts the energy substantially, Gallant says. One important application of such batteries would be for medical devices such as pacemakers.

    “If you can extend lifetime, you’re talking about longer times between invasive replacement surgeries, which really affects patient quality of life,” she says.

    Gallant’s team is also leading efforts to enable higher-energy rechargeable lithium-ion batteries for electric vehicles. Key to a step-change in energy, and therefore driving range, is to use a lithium metal anode in place of graphite. Lithium metal is highly reactive, however, with all battery electrolytes, and its interface needs to be stabilized in ways that still elude researchers. Gallant’s team is developing design guidelines for such interfaces, and for next-generation electrolytes to form and sustain these interfaces. Gallant says that applying the technology to that purpose and commercializing it would be “a bit longer-term, but I believe this change to lithium anodes will happen, and it’s just a matter of when.”

    About six years ago, when Gallant founded her lab, she and her team started introducing carbon dioxide into batteries as a way to experiment with electrochemical conversion of the greenhouse gas. She says they realized that batteries do not present the best practical technology to mitigate CO2, but their experimentation did open up new paths to carbon capture and conversion. “That work allowed us to think creatively, and we started to realize that there is tremendous potential to manipulate CO2 reactions by carefully designing the electrochemical environment.” That led her team to the idea of conducting electrochemical transformations on CO2 from a captured state bound to a capture sorbent, replacing the energy-intense regeneration step of today’s capture processes and streamlining the process.  

    “Now we’re seeing other researchers working on that, too, and taking this idea in exciting directions — it’s a very challenging and very rich topic,” she says.

    Gallant has won awards including an MIT Bose Fellowship, the Army Research Office Young Investigator Award, the Scialog Fellowship in Energy Storage and in Negative Emissions Science, a CAREER award from the National Science Foundation, the Ruth and Joel Spira Award for Distinguished Teaching at MIT, the Electrochemical Society (ECS) Battery Division Early Career award, and an ECS-Toyota Young Investigator Award.

    These days, Gallant does some of her best thinking while brainstorming with her research group members and with her husband, who is also an academic. She says being a professor at MIT means she has “a queue of things to think about,” but she sometimes gets awarded with a revelation.

    “My brain gets overloaded because I can’t think through everything instantaneously; ideas have to get in line! So there’s a lot going on in the background at all times,” she say. “I don’t know how it works, but sometimes I’ll be going for a walk or doing something else, and an idea breaks through. Those are the fun ones.” More

  • in

    A simple way to significantly increase lifetimes of fuel cells and other devices

    In research that could jump-start work on a range of technologies including fuel cells, which are key to storing solar and wind energy, MIT researchers have found a relatively simple way to increase the lifetimes of these devices: changing the pH of the system.

    Fuel and electrolysis cells made of materials known as solid metal oxides are of interest for several reasons. For example, in the electrolysis mode, they are very efficient at converting electricity from a renewable source into a storable fuel like hydrogen or methane that can be used in the fuel cell mode to generate electricity when the sun isn’t shining or the wind isn’t blowing. They can also be made without using costly metals like platinum. However, their commercial viability has been hampered, in part, because they degrade over time. Metal atoms seeping from the interconnects used to construct banks of fuel/electrolysis cells slowly poison the devices.

    “What we’ve been able to demonstrate is that we can not only reverse that degradation, but actually enhance the performance above the initial value by controlling the acidity of the air-electrode interface,” says Harry L. Tuller, the R.P. Simmons Professor of Ceramics and Electronic Materials in MIT’s Department of Materials Science and Engineering (DMSE).

    The research, initially funded by the U.S. Department of Energy through the Office of Fossil Energy and Carbon Management’s (FECM) National Energy Technology Laboratory, should help the department meet its goal of significantly cutting the degradation rate of solid oxide fuel cells by 2035 to 2050.

    “Extending the lifetime of solid oxide fuels cells helps deliver the low-cost, high-efficiency hydrogen production and power generation needed for a clean energy future,” says Robert Schrecengost, acting director of FECM’s Division of Hydrogen with Carbon Management. “The department applauds these advancements to mature and ultimately commercialize these technologies so that we can provide clean and reliable energy for the American people.”

    “I’ve been working in this area my whole professional life, and what I’ve seen until now is mostly incremental improvements,” says Tuller, who was recently named a 2022 Materials Research Society Fellow for his career-long work in solid-state chemistry and electrochemistry. “People are normally satisfied with seeing improvements by factors of tens-of-percent. So, actually seeing much larger improvements and, as importantly, identifying the source of the problem and the means to work around it, issues that we’ve been struggling with for all these decades, is remarkable.”

    Says James M. LeBeau, the John Chipman Associate Professor of Materials Science and Engineering at MIT, who was also involved in the research, “This work is important because it could overcome [some] of the limitations that have prevented the widespread use of solid oxide fuel cells. Additionally, the basic concept can be applied to many other materials used for applications in the energy-related field.”

    A report describing the work was reported Aug. 11, in Energy & Environmental Science. Additional authors of the paper are Han Gil Seo, a DMSE postdoc; Anna Staerz, formerly a DMSE postdoc, now at Interuniversity Microelectronics Centre (IMEC) Belgium and soon to join the Colorado School of Mines faculty; Dennis S. Kim, a DMSE postdoc; Dino Klotz, a DMSE visiting scientist, now at Zurich Instruments; Michael Xu, a DMSE graduate student; and Clement Nicollet, formerly a DMSE postdoc, now at the Université de Nantes. Seo and Staerz contributed equally to the work.

    Changing the acidity

    A fuel/electrolysis cell has three principal parts: two electrodes (a cathode and anode) separated by an electrolyte. In the electrolysis mode, electricity from, say, the wind, can be used to generate storable fuel like methane or hydrogen. On the other hand, in the reverse fuel cell reaction, that storable fuel can be used to create electricity when the wind isn’t blowing.

    A working fuel/electrolysis cell is composed of many individual cells that are stacked together and connected by steel metal interconnects that include the element chrome to keep the metal from oxidizing. But “it turns out that at the high temperatures that these cells run, some of that chrome evaporates and migrates to the interface between the cathode and the electrolyte, poisoning the oxygen incorporation reaction,” Tuller says. After a certain point, the efficiency of the cell has dropped to a point where it is not worth operating any longer.

    “So if you can extend the life of the fuel/electrolysis cell by slowing down this process, or ideally reversing it, you could go a long way towards making it practical,” Tuller says.

    The team showed that you can do both by controlling the acidity of the cathode surface. They also explained what is happening.

    To achieve their results, the team coated the fuel/electrolysis cell cathode with lithium oxide, a compound that changes the relative acidity of the surface from being acidic to being more basic. “After adding a small amount of lithium, we were able to recover the initial performance of a poisoned cell,” Tuller says. When the engineers added even more lithium, the performance improved far beyond the initial value. “We saw improvements of three to four orders of magnitude in the key oxygen reduction reaction rate and attribute the change to populating the surface of the electrode with electrons needed to drive the oxygen incorporation reaction.”

    The engineers went on to explain what is happening by observing the material at the nanoscale, or billionths of a meter, with state-of-the-art transmission electron microscopy and electron energy loss spectroscopy at MIT.nano. “We were interested in understanding the distribution of the different chemical additives [chromium and lithium oxide] on the surface,” says LeBeau.

    They found that the lithium oxide effectively dissolves the chromium to form a glassy material that no longer serves to degrade the cathode performance.

    Applications for sensors, catalysts, and more

    Many technologies like fuel cells are based on the ability of the oxide solids to rapidly breathe oxygen in and out of their crystalline structures, Tuller says. The MIT work essentially shows how to recover — and speed up — that ability by changing the surface acidity. As a result, the engineers are optimistic that the work could be applied to other technologies including, for example, sensors, catalysts, and oxygen permeation-based reactors.

    The team is also exploring the effect of acidity on systems poisoned by different elements, like silica.

    Concludes Tuller: “As is often the case in science, you stumble across something and notice an important trend that was not appreciated previously. Then you test that concept further, and you discover that it is really very fundamental.”

    In addition to the DOE, this work was also funded by the National Research Foundation of Korea, the MIT Department of Materials Science and Engineering via Tuller’s appointment as the R.P. Simmons Professor of Ceramics and Electronic Materials, and the U.S. Air Force Office of Scientific Research. More

  • in

    Using excess heat to improve electrolyzers and fuel cells

    Reducing the use of fossil fuels will have unintended consequences for the power-generation industry and beyond. For example, many industrial chemical processes use fossil-fuel byproducts as precursors to things like asphalt, glycerine, and other important chemicals. One solution to reduce the impact of the loss of fossil fuels on industrial chemical processes is to store and use the heat that nuclear fission produces. New MIT research has dramatically improved a way to put that heat toward generating chemicals through a process called electrolysis. 

    Electrolyzers are devices that use electricity to split water (H2O) and generate molecules of hydrogen (H2) and oxygen (O2). Hydrogen is used in fuel cells to generate electricity and drive electric cars or drones or in industrial operations like the production of steel, ammonia, and polymers. Electrolyzers can also take in water and carbon dioxide (CO2) and produce oxygen and ethylene (C2H4), a chemical used in polymers and elsewhere.

    There are three main types of electrolyzers. One type works at room temperature, but has downsides; they’re inefficient and require rare metals, such as platinum. A second type is more efficient but runs at high temperatures, above 700 degrees Celsius. But metals corrode at that temperature, and the devices need expensive sealing and insulation. The third type would be a Goldilocks solution for nuclear heat if it were perfected, running at 300-600 C and requiring mostly cheap materials like stainless steel. These cells have never been operated as efficiently as theory says they should. The new work, published this month in Nature, both illuminates the problem and offers a solution.

    A sandwich mystery

    The intermediate-temperature devices use what are called protonic ceramic electrochemical cells. Each cell is a sandwich, with a dense electrolyte layered between two porous electrodes. Water vapor is pumped into the top electrode. A wire on the side connects the two electrodes, and externally generated electricity runs from the top to the bottom. The voltage pulls electrons out of the water, which splits the molecule, releasing oxygen. A hydrogen atom without an electron is just a proton. The protons get pulled through the electrolyte to rejoin with the electrons at the bottom electrode and form H2 molecules, which are then collected.

    On its own, the electrolyte in the middle, made mainly of barium, cerium, and zirconium, conducts protons very well. “But when we put the same material into this three-layer device, the proton conductivity of the full cell is pretty bad,” says Yanhao Dong, a postdoc in MIT’s Department of Nuclear Science and Engineering and a paper co-author. “Its conductivity is only about 50 percent of the bulk form’s. We wondered why there’s an inconsistency here.”

    A couple of clues pointed them in the right direction. First, if they don’t prepare the cell very carefully, the top layer, only about 20 microns (.02 millimeters) thick, doesn’t stay attached. “Sometimes if you use just Scotch tape, it will peel off,” Dong says. Second, when they looked at a cross section of a device using a scanning electron microscope, they saw that the top surface of the electrolyte layer was flat, whereas the bottom surface of the porous electrode sitting on it was bumpy, and the two came into contact in only a few places. They didn’t bond well. That precarious interface leads to both structural de-lamination and poor proton passage from the electrode to the electrolyte.

    Acidic solution

    The solution turned out to be simple: researchers roughed up the top of the electrolyte. Specifically, they applied acid for 10 minutes, which etched grooves into the surface. Ju Li, the Battelle Energy Alliance Professor in Nuclear Engineering and professor of materials science and engineering at MIT, and a paper co-author, likens it to sandblasting a surface before applying paint to increase adhesion. Their acid-treated cells produced about 200 percent more hydrogen per area at 1.5 volts at 600 C than did any previous cell of its type, and worked well down to 350 C with very little performance decay over extended operation. 

    “The authors reported a surprisingly simple yet highly effective surface treatment to dramatically improve the interface,” says Liangbing Hu, the director of the Center for Materials Innovation at the Maryland Energy Innovation Institute, who was not involved in the work. He calls the cell performance “exceptional.”

    “We are excited and surprised” by the results, Dong says. “The engineering solution seems quite simple. And that’s actually good, because it makes it very applicable to real applications.” In a practical product, many such cells would be stacked together to form a module. MIT’s partner in the project, Idaho National Laboratory, is very strong in engineering and prototyping, so Li expects to see electrolyzers based on this technology at scale before too long. “At the materials level, this is a breakthrough that shows that at a real-device scale you can work at this sweet spot of temperature of 350 to 600 degrees Celsius for nuclear fission and fusion reactors,” he says.

    “Reduced operating temperature enables cheaper materials for the large-scale assembly, including the stack,” says Idaho National Laboratory researcher and paper co-author Dong Ding. “The technology operates within the same temperature range as several important, current industrial processes, including ammonia production and CO2 reduction. Matching these temperatures will expedite the technology’s adoption within the existing industry.”

    “This is very significant for both Idaho National Lab and us,” Li adds, “because it bridges nuclear energy and renewable electricity.” He notes that the technology could also help fuel cells, which are basically electrolyzers run in reverse, using green hydrogen or hydrocarbons to generate electricity. According to Wei Wu, a materials scientist at Idaho National Laboratory and a paper co-author, “this technique is quite universal and compatible with other solid electrochemical devices.”

    Dong says it’s rare for a paper to advance both science and engineering to such a degree. “We are happy to combine those together and get both very good scientific understanding and also very good real-world performance.”

    This work, done in collaboration with Idaho National Laboratory, New Mexico State University, and the University of Nebraska–Lincoln, was funded, in part, by the U.S. Department of Energy. More