More stories

  • in

    Embracing the future we need

    When you picture MIT doctoral students taking small PhD courses together, you probably don’t imagine them going on class field trips. But it does happen, sometimes, and one of those trips changed Andy Sun’s career.

    Today, Sun is a faculty member at the MIT Sloan School of Management and a leading global expert on integrating renewable energy into the electric grid. Back in 2007, Sun was an operations research PhD candidate with a diversified academic background: He had studied electrical engineering, quantum computing, and analog computing but was still searching for a doctoral research subject involving energy. 

    One day, as part of a graduate energy class taught by visiting professor Ignacio J. Pérez Arriaga, the students visited the headquarters of ISO-New England, the organization that operates New England’s entire power grid and wholesale electricity market. Suddenly, it hit Sun. His understanding of engineering, used to design and optimize computing systems, could be applied to the grid as a whole, with all its connections, circuitry, and need for efficiency. 

    “The power grids in the U.S. continent are composed of two major interconnections, the Western Interconnection, the Eastern Interconnection, and one minor interconnection, the Texas grid,” Sun says. “Within each interconnection, the power grid is one big machine, essentially. It’s connected by tens of thousands of miles of transmission lines, thousands of generators, and consumers, and if anything is not synchronized, the system may collapse. It’s one of the most complicated engineering systems.”

    And just like that, Sun had a subject he was motivated to pursue. “That’s how I got into this field,” he says. “Taking a field trip.”Sun has barely looked back. He has published dozens of papers about optimizing the flow of intermittent renewable energy through the electricity grid, a major practical issue for grid operators, while also thinking broadly about the future form of the grid and the process of making almost all energy renewable. Sun, who in 2022 rejoined MIT as the Iberdrola-Avangrid Associate Professor in Electric Power Systems, and is also an associate professor of operations research, emphasizes the urgency of rapidly switching to renewables.

    “The decarbonization of our energy system is fundamental,” Sun says. “It will change a lot of things because it has to. We don’t have much time to get there. Two decades, three decades is the window in which we have to get a lot of things done. If you think about how much money will need to be invested, it’s not actually that much. We should embrace this future that we have to get to.”

    Successful operations

    Unexpected as it may have been, Sun’s journey toward being an electricity grid expert was informed by all the stages of his higher education. Sun grew up in China, and received his BA in electronic engineering from Tsinghua University in Beijing, in 2003. He then moved to MIT, joining the Media Lab as a graduate student. Sun intended to study quantum computing but instead began working on analog computer circuit design for Professor Neil Gershenfeld, another person whose worldview influenced Sun.  

    “He had this vision about how optimization is very important in things,” Sun says. “I had never heard of optimization before.” 

    To learn more about it, Sun started taking MIT courses in operations research. “I really enjoyed it, especially the nonlinear optimization course taught by Robert Freund in the Operations Research Center,” he recalls. 

    Sun enjoyed it so much that after a while, he joined MIT’s PhD program in operations research, thanks to the guidance of Freund. Later, he started working with MIT Sloan Professor Dimitri Bertsimas, a leading figure in the field. Still, Sun hadn’t quite nailed down what he wanted to focus on within operations research. Thinking of Sun’s engineering skills, Bertsimas suggested that Sun look for a research topic related to energy. 

    “He wasn’t an expert in energy at that time, but he knew that there are important problems there and encouraged me to go ahead and learn,” Sun says. 

    So it was that Sun found himself in ISO-New England headquarters one day in 2007, finally knowing what he wanted to study, and quickly finding opportunities to start learning from the organization’s experts on electricity markets. By 2011, Sun had finished his MIT PhD dissertation. Based in part on ISO-New England data, the thesis presented new modeling to more efficiently integrate renewable energy into the grid; built some new modeling tools grid operators could use; and developed a way to add fair short-term energy auctions to an efficient grid system.

    The core problem Sun deals with is that, unlike some other sources of electricity, renewables tend to be intermittent, generating power in an uneven pattern over time. That’s not an insurmountable problem for grid operators, but it does require some new approaches. Many of the papers Sun has written focus on precisely how to increasingly draw upon intermittent energy sources while ensuring that the grid’s current level of functionality remains intact. This is also the focus of his 2021 book, co-authored with Antonio J. Conejo, “Robust Optimiziation in Electric Energy Systems.”

    “A major theme of my research is how to achieve the integration of renewables and still operate the system reliably,” Sun says. “You have to keep the balance of supply and demand. This requires many time scales of operation from multidecade planning, to monthly or annual maintenance, to daily operations, down through second-by-second. I work on problems in all these timescales.”

    “I sit in the interface between power engineering and operations research,” Sun says. “I’m not a power engineer, but I sit in this boundary, and I keep the problems in optimization as my motivation.”

    Culture shift

    Sun’s presence on the MIT campus represents a homecoming of sorts. After receiving his doctorate from MIT, Sun spent a year as a postdoc at IBM’s Thomas J. Watson Research Center, then joined the faculty at Georgia Tech, where he remained for a decade. He returned to the Institute in January of 2022.

    “I’m just very excited about the opportunity of being back at MIT,” Sun says. “The MIT Energy Initiative is a such a vibrant place, where many people come together to work on energy. I sit in Sloan, but one very strong point of MIT is there are not many barriers, institutionally. I really look forward to working with colleagues from engineering, Sloan, everywhere, moving forward. We’re moving in the right direction, with a lot of people coming together to break the traditional academic boundaries.” 

    Still, Sun warns that some people may be underestimating the severity of the challenge ahead and the need to implement changes right now. The assets in power grids have long life time, lasting multiple decades. That means investment decisions made now could affect how much clean power is being used a generation from now. 

    “We’re talking about a short timeline, for changing something as huge as how a society fundamentally powers itself with energy,” Sun says. “A lot of that must come from the technology we have today. Renewables are becoming much better and cheaper, so their use has to go up.”

    And that means more people need to work on issues of how to deploy and integrate renewables into everyday life, in the electric grid, transportation, and more. Sun hopes people will increasingly recognize energy as a huge growth area for research and applied work. For instance, when MIT President Sally Kornbluth gave her inaugural address on May 1 this year, she emphasized tackling the climate crisis as her highest priority, something Sun noticed and applauded. 

    “I think the most important thing is the culture,” Sun says. “Bring climate up to the front, and create the platform to encourage people to come together and work on this issue.” More

  • in

    Megawatt electrical motor designed by MIT engineers could help electrify aviation

    Aviation’s huge carbon footprint could shrink significantly with electrification. To date, however, only small all-electric planes have gotten off the ground. Their electric motors generate hundreds of kilowatts of power. To electrify larger, heavier jets, such as commercial airliners, megawatt-scale motors are required. These would be propelled by hybrid or turbo-electric propulsion systems where an electrical machine is coupled with a gas turbine aero-engine.

    To meet this need, a team of MIT engineers is now creating a 1-megawatt motor that could be a key stepping stone toward electrifying larger aircraft. The team has designed and tested the major components of the motor, and shown through detailed computations that the coupled components can work as a whole to generate one megawatt of power, at a weight and size competitive with current small aero-engines.

    For all-electric applications, the team envisions the motor could be paired with a source of electricity such as a battery or a fuel cell. The motor could then turn the electrical energy into mechanical work to power a plane’s propellers. The electrical machine could also be paired with a traditional turbofan jet engine to run as a hybrid propulsion system, providing electric propulsion during certain phases of a flight.

    “No matter what we use as an energy carrier — batteries, hydrogen, ammonia, or sustainable aviation fuel — independent of all that, megawatt-class motors will be a key enabler for greening aviation,” says Zoltan Spakovszky, the T. Wilson Professor in Aeronautics and the Director of the Gas Turbine Laboratory (GTL) at MIT, who leads the project.

    Spakovszky and members of his team, along with industry collaborators, will present their work at a special session of the American Institute of Aeronautics and Astronautics – Electric Aircraft Technologies Symposium (EATS) at the Aviation conference in June.

    The MIT team is composed of faculty, students, and research staff from GTL and the MIT Laboratory for Electromagnetic and Electronic Systems: Henry Andersen Yuankang Chen, Zachary Cordero, David Cuadrado,  Edward Greitzer, Charlotte Gump, James Kirtley, Jr., Jeffrey Lang, David Otten, David Perreault, and Mohammad Qasim,  along with Marc Amato of Innova-Logic LLC. The project is sponsored by Mitsubishi Heavy Industries (MHI).

    Heavy stuff

    To prevent the worst impacts from human-induced climate change, scientists have determined that global emissions of carbon dioxide must reach net zero by 2050. Meeting this target for aviation, Spakovszky says, will require “step-change achievements” in the design of unconventional aircraft, smart and flexible fuel systems, advanced materials, and safe and efficient electrified propulsion. Multiple aerospace companies are focused on electrified propulsion and the design of megawatt-scale electric machines that are powerful and light enough to propel passenger aircraft.

    “There is no silver bullet to make this happen, and the devil is in the details,” Spakovszky says. “This is hard engineering, in terms of co-optimizing individual components and making them compatible with each other while maximizing overall performance. To do this means we have to push the boundaries in materials, manufacturing, thermal management, structures and rotordynamics, and power electronics”

    Broadly speaking, an electric motor uses electromagnetic force to generate motion. Electric motors, such as those that power the fan in your laptop, use electrical energy — from a battery or power supply — to generate a magnetic field, typically through copper coils. In response, a magnet, set near the coils, then spins in the direction of the generated field and can then drive a fan or propeller.

    Electric machines have been around for over 150 years, with the understanding that, the bigger the appliance or vehicle, the larger the copper coils  and the magnetic rotor, making the machine heavier. The more power the electrical machine generates, the more heat it produces, which requires additional elements to keep the components cool — all of which can take up space and add significant weight to the system, making it challenging for airplane applications.

    “Heavy stuff doesn’t go on airplanes,” Spakovszky says. “So we had to come up with a compact, lightweight, and powerful architecture.”

    Good trajectory

    As designed, the MIT electric motor and power electronics are each about the size of a checked suitcase weighing less than an adult passenger.

    The motor’s main components are: a high-speed rotor, lined with an array of magnets with varying orientation of polarity; a compact low-loss stator that fits inside the rotor and contains an intricate array of copper windings; an advanced heat exchanger that keeps the components cool while transmitting the torque of the machine; and a distributed power electronics system, made from 30 custom-built circuit boards, that precisely change the currents running through each of the stator’s copper windings, at high frequency.

    “I believe this is the first truly co-optimized integrated design,” Spakovszky says. “Which means we did a very extensive design space exploration where all considerations from thermal management, to rotor dynamics, to power electronics and electrical machine architecture were assessed in an integrated way to find out what is the best possible combination to get the required specific power at one megawatt.”

    As a whole system, the motor is designed such that the distributed circuit boards are close coupled with the electrical machine to minimize transmission loss and to allow effective air cooling through the integrated heat exchanger.

    “This is a high-speed machine, and to keep it rotating while creating torque, the magnetic fields have to be traveling very quickly, which we can do through our circuit boards switching at high frequency,” Spakovszky says.

    To mitigate risk, the team has built and tested each of the major components individually, and shown that they can operate as designed and at conditions exceeding normal operational demands. The researchers plan to assemble the first fully working electric motor, and start testing it in the fall.

    “The electrification of aircraft has been on a steady rise,” says Phillip Ansell, director of the Center for Sustainable Aviation at the University of Illinois Urbana-Champaign, who was not involved in the project. “This group’s design uses a wonderful combination of conventional and cutting-edge methods for electric machine development, allowing it to offer both robustness and efficiency to meet the practical needs of aircraft of the future.”

    Once the MIT team can demonstrate the electric motor as a whole, they say the design could power regional aircraft and could also be a companion to conventional jet engines, to enable hybrid-electric propulsion systems. The team also envision that multiple one-megawatt motors could power multiple fans distributed along the wing on future aircraft configurations. Looking ahead, the foundations of the one-megawatt electrical machine design could potentially be scaled up to multi-megawatt motors, to power larger passenger planes.

    “I think we’re on a good trajectory,” says Spakovszky, whose group and research have focused on more than just gas turbines. “We are not electrical engineers by training, but addressing the 2050 climate grand challenge is of utmost importance; working with electrical engineering faculty, staff and students for this goal can draw on MIT’s breadth of technologies so the whole is greater than the sum of the parts. So we are reinventing ourselves in new areas. And MIT gives you the opportunity to do that.” More

  • in

    With new heat treatment, 3D-printed metals can withstand extreme conditions

    A new MIT-developed heat treatment transforms the microscopic structure of 3D-printed metals, making the materials stronger and more resilient in extreme thermal environments. The technique could make it possible to 3D print high-performance blades and vanes for power-generating gas turbines and jet engines, which would enable new designs with improved fuel consumption and energy efficiency.

    Today’s gas turbine blades are manufactured through conventional casting processes in which molten metal is poured into complex molds and directionally solidified. These components are made from some of the most heat-resistant metal alloys on Earth, as they are designed to rotate at high speeds in extremely hot gas, extracting work to generate electricity in power plants and thrust in jet engines.

    There is growing interest in manufacturing turbine blades through 3D-printing, which, in addition to its environmental and cost benefits, could allow manufacturers to quickly produce more intricate, energy-efficient blade geometries. But efforts to 3D-print turbine blades have yet to clear a big hurdle: creep.

    In metallurgy, creep refers to a metal’s tendency to permanently deform in the face of persistent mechanical stress and high temperatures. While researchers have explored printing turbine blades, they have found that the printing process produces fine grains on the order of tens to hundreds of microns in size — a microstructure that is especially vulnerable to creep.

    “In practice, this would mean a gas turbine would have a shorter life or less fuel efficiency,” says Zachary Cordero, the Boeing Career Development Professor in Aeronautics and Astronautics at MIT. “These are costly, undesirable outcomes.”

    Cordero and his colleagues found a way to improve the structure of 3D-printed alloys by adding an additional heat-treating step, which transforms the as-printed material’s fine grains into much larger “columnar” grains — a sturdier microstructure that should minimize the material’s creep potential, since the “columns” are aligned with the axis of greatest stress. The researchers say the method, outlined today in Additive Manufacturing, clears the way for industrial 3D-printing of gas turbine blades.

    “In the near future, we envision gas turbine manufacturers will print their blades and vanes at large-scale additive manufacturing plants, then post-process them using our heat treatment,” Cordero says. “3D-printing will enable new cooling architectures that can improve the thermal efficiency of a turbine, so that it produces the same amount of power while burning less fuel and ultimately emits less carbon dioxide.”

    Cordero’s co-authors on the study are lead author Dominic Peachey, Christopher Carter, and Andres Garcia-Jimenez at MIT, Anugrahaprada Mukundan and Marie-Agathe Charpagne of the University of Illinois at Urbana-Champaign, and Donovan Leonard of Oak Ridge National Laboratory.

    Triggering a transformation

    The team’s new method is a form of directional recrystallization — a heat treatment that passes a material through a hot zone at a precisely controlled speed to meld a material’s many microscopic grains into larger, sturdier, and more uniform crystals.

    Directional recrystallization was invented more than 80 years ago and has been applied to wrought materials. In their new study, the MIT team adapted directional recrystallization for 3D-printed superalloys.

    The team tested the method on 3D-printed nickel-based superalloys — metals that are typically cast and used in gas turbines. In a series of experiments, the researchers placed 3D-printed samples of rod-shaped superalloys in a room-temperature water bath placed just below an induction coil. They slowly drew each rod out of the water and through the coil at various speeds, dramatically heating the rods to temperatures varying between 1,200 and 1,245 degrees Celsius.

    They found that drawing the rods at a particular speed (2.5 millimeters per hour) and through a specific temperature (1,235 degrees Celsius) created a steep thermal gradient that triggered a transformation in the material’s printed, fine-grained microstructure.

    “The material starts as small grains with defects called dislocations, that are like a mangled spaghetti,” Cordero explains. “When you heat this material up, those defects can annihilate and reconfigure, and the grains are able to grow. We’re continuously elongating the grains by consuming the defective material and smaller grains — a process termed recrystallization.”

    Creep away

    After cooling the heat-treated rods, the researchers examined their microstructure using optical and electron microscopy, and found that the material’s printed microscopic grains were replaced with “columnar” grains, or long crystal-like regions that were significantly larger than the original grains.

    “We’ve completely transformed the structure,” says lead author Dominic Peachey. “We show we can increase the grain size by orders of magnitude, to massive columnar grains, which theoretically should lead to dramatic improvements in creep properties.”

    The team also showed they could manipulate the draw speed and temperature of the rod samples to tailor the material’s growing grains, creating regions of specific grain size and orientation. This level of control, Cordero says, can enable manufacturers to print turbine blades with site-specific microstructures that are resilient to specific operating conditions.

    Cordero plans to test the heat treatment on 3D-printed geometries that more closely resemble turbine blades. The team is also exploring ways to speed up the draw rate, as well as test a heat-treated structure’s resistance to creep. Then, they envision that the heat treatment could enable the practical application of 3D-printing to produce industrial-grade turbine blades, with more complex shapes and patterns.

    “New blade and vane geometries will enable more energy-efficient land-based gas turbines, as well as, eventually, aeroengines,” Cordero notes. “This could from a baseline perspective lead to lower carbon dioxide emissions, just through improved efficiency of these devices.”

    This research was supported, in part, by the U.S. Office of Naval Research. More